• Title/Summary/Keyword: incineration system

Search Result 143, Processing Time 0.027 seconds

The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning (Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

The Study of Waste Treatment using Advanced Oxygen Enriched Combustion System (산소부하 연소 시스템을 이용한 폐기물 열처리에 관한 연구)

  • Lee, Keon-Joo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • In this study, the waste of landfill was treated using advanced enriched oxygen combustion system. The oxygen concentration of this study was 21%, 25%, 30% and 40% and the operating capacity was 200 g/min and the residence time was 10 minutes. As increased the oxygen concentration of combustion air. temperature of the incinerator was increased and the temperature was increased rapidly when the oxygen concentration was 30%. As increased the oxygen concentration, the NOx (ppm) of flue gas increase d for thermal NOx, however the CO (ppm) of flue gas decreased according to the increase of combustion efficiency . The optimum operation condition of incineration was obtained when the oxygen concentration is 30%${\sim}$40%. The unburned carbon of ash decreased from 10% to 4% when the oxygen concentration was increased from 21% to 30%, therefore the high combustion efficiency can be obtained if used the oxygen enriched combustion system.

  • PDF

Life Cycle Assessment (LCA) on Sludge Treatment System (Life Cycle Assessment(LCA)를 도입(導入)한 오니처리(汚泥處理)시스템의 평가(評價))

  • Hwang, Yong-Woo;Kwon, Bong-Kee;Ryu, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.50-64
    • /
    • 1997
  • Life cycle assessment (LCA) on total sewage sludge treatment system from thickening to incineration and melting was performed for estimating global environmental impact as $CO_2$. In general, the life cycles of actual treatment facilities consist of construction, operation and dismantlement. In this study, the amount of $CO_2$ produced from both whole and each life cycle step of currently used unit sludge treatment processes were calculated by inventory analysis. In addition, in the all processes investigated in this study, individual $CO_2$ production unit (CPU), i.e. total produced $CO_2$ by treating a unit weight of sludge was also calculated. By using the CPU matrix of the unit processes, it was possible to simulate the $CO_2$ production for any type of complex-system as well as to trace a dominant cause of $CO_2$ production in each process. Four selected alternatives examined here, each involve the same disposal way but differ substantially in the $CO_2$ exhaust.

  • PDF

A Effect of Fluid-assisted Sliding on Stress Relaxation of Bi-Te Modules in Thermoelectric Generation System (열전발전용 Bi-Te module에서 미끄럼에 따른 열응력 완화 특성)

  • 서창민;우병철
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.62-97
    • /
    • 2000
  • Recently the research for utilization of waste heat produced from electric power plants, casting factories, heat treating factories or commercial are being afforded by the need for energy saving. The objective of this study is to develop a thermoelectric generation system which unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper a thermoelectric technology on a optimum system design method and efficiency and cost effective thermoelectric element on order to extract the maximum power output from energy conversion of waste energy. It is shown that the longitudinal stresses of module contacted with two point constrained Al tubes could be released more than those with a one-point constrained.

  • PDF

A Characteristic of Fluid-Assisted Sliding on Stress Relaxation of Bi-Te Modules in Thermoelectric Generation System (열전발전용 Bi-Te Module에서 미끄럼에 따른 열응력 완화 특성)

  • 우병철;이희웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.12-18
    • /
    • 2003
  • Recently the research for utilization of waste heat produced from electric power plants, casting factories, heat treating factories or commercial building are being afforded by the need for energy saving. The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents a thermoelectric technology on a optimum system design method and efficiency and cost effective thermoelectric element on order to extract the maximum power output from energy conversion of waste energy. It is shown that the longitudinal stresses of module contacted with two point constrained AI tubes could be released more than those with a one-point constrained.

A Study on the Spatial Distribution of Medical Waste Generation and Treatment in Korea (한국의 의료폐기물 발생 및 처리의 공간적 분포에 관한 연구)

  • Oh, Se-Eun;Lee, Jinheon;Ahn, Hoki;Kim, Ki-Youn;Park, Seokhwan;Ha, Kwonchul;Ji, Kyunghee;Hwang, Sungho;Yoon, Oh-Sub;Hong, Young-Seoub;Lee, Eunil;Kim, Pangyi;Lee, Kyoung-Mu
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.6
    • /
    • pp.449-457
    • /
    • 2015
  • Objectives: In Korea, the system of management of medical waste largely relies on the incineration method. Our study aimed to identify any regional imbalances between the generation and treatment of medical waste, and provide reference data for future policy in Korea. Methods: We analyzed data on the amount of medical waste from 2,000 hospitals in 2012, 2013, and 2014 obtained from the Korea Environment Corporation. In the Arc GIS program (version 10.2.3), the addresses of hospitals and incinerators were transformed into map coordinates. The amount of waste generated by each hospital and the amount incinerated were represented by density and size of a triangle symbol, respectively. Results: As of 2014, the total amount of medical waste from the top 2,000 hospitals was 136,073 tons, out of which about half (49%) was generated in the capital area. Eleven incineration companies (three in the capital area, two in the Chungcheong Provinces area, one in the Jeolla Provinces area, and five in the Gyeongsang Provinces area) treated this waste. For the years 2012, 2013, and 2014, about 60% of the medical waste generated from the hospitals in the capital area was treated within the capital area and about 40% was transported to other areas, especially the Gyeongsang Provinces area, for treatment. On the other hand, about 90% of the medical waste incinerated in the capital area originated from the capital area. Conclusion: Our results suggest a spatial imbalance between the generation and treatment of medical waste in Korea and warrants multilateral policies, including the expansion of on-site treatment, strengthening regulation of the containment of medical wastes, promoting reductions in medical waste and more.

Environmental Impact Assessment of EPS Box for Fresh Food in Korea and Europe (한국과 유럽의 신선식품용 EPS박스에 대한 전과정 환경영향평가)

  • SY, Kim;CHAROENSRI, KORAKOT;YJ, Shin;HJ, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.201-210
    • /
    • 2022
  • Expanded polystyrene (EPS) is the most commonly used fresh food refrigeration insulation in Korea and Europe. Moreover, as the use of disposable packaging materials has increased significantly along with non-face-to-face delivery services since the COVID-19 crisis, social issues related to waste disposal are also being raised. Therefore, in this study, the life cycle of EPS boxes for fresh food is focused on the factors that have a large difference between incineration and landfill including recycling in Europe and Korea in the disposal process after use, and raw materials and energy in the manufacturing process, which account for a large portion of the environmental impact value. We tried to compare the environmental impact of evaluation. Overall, the raw material production stage, box manufacturing stage, and packaging stage have similar processes in Europe and Korea, but unlike Europe, Korea, which lacks landfills and incineration facilities, has focused on expanding the recycling rate. It was necessary to do an environmental impact assessment. Data affecting the environment were derived based on 2019 and 2020 data for Korea and 2017 and 2020 data for Europe. In order to predict the future environmental impact assessment, assumptions about the disposal rate in 2025 and 2030 were introduced and evaluated. As a result of this study, it was found that the raw material production stage of EPS boxes, which have similar processes in both Korea and Europe, has the greatest effect on the global warming effect of Korean EPS boxes. However, Korea, which has a relatively high recycling rate in the disposal process compared to incineration and landfill, showed better environmental performance than Europe in most impact indicators except freshwater eutrophication. In particular, Korea has increased the overall recycling rate compared to Europe by replacing various recyclable materials such as building materials and sundries with XPS (extruded polystyrene) recycled materials. In conclusion, it was found that increasing the recycling rate rather than incinerating and landfilling EPS boxes for fresh food in the domestic EPS industry has relatively less environmental load compared to Europe.

Evaluation of Separation on the Copper Recovery from Jelly filled type Cable (젤리충전통신케이블의 구리회수를 위한 친환경적 분리기술평가)

  • Min, Dal-Ki;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.21-26
    • /
    • 2003
  • The generation of waste cable has been continuously increased as a production of electrical and communication media are extended. The current recovery methods, such as mechanical peeling, incineration, solvent extraction and pyrolysis, seems inadequate because they are either hard to apply in some cases or environmentally unacceptable. It has been shown that copper can be effectively separated from the jelly filled type cables using a soybean oil treatment method. As a result, jelly compound is vanished from the wire by soybean oil bath and waste wires are separated copper and PE by the mechanical chipper. This is a more environmentally friendly method than burning, and considerably faster than Stripping.

Scale-up of Melting Chamber for a Pyrolysis Melting Incinemtion System (폐기물 열분해/용융 소각 시스템의 용융로 Scale-up 연구)

  • Yang, Won;Kim, Bong-Keun;Yu, Tae-U;Jeun, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.168-175
    • /
    • 2007
  • Ash melting chamber is one of the key facility of the pyrolysis-melting incineration system, and it should be designed and operated very carefully for avoiding solidification of slag. In this study, an example of numerical and experimental scale-up process of the melting chamber, in which high speed air is injected to the molten slag and generates bubbles, which enhances agitation of the slag and char combustion, is presented. Cold flow test, combustion and melting test in a lab-scale (30 kg/hr) chamber and a pilot scale (200 kg/hr) chamber. Minimum energy for maintaining molten slag is derived, and it was found that the molten slag can be maintained efficiently by concentrating heat into the bubbling slag.

  • PDF

유류오염 토양의 복원을 위한 열탈착 처리기술

  • 유동준;김영웅;박용규;오방일;구자공
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.111-114
    • /
    • 2001
  • Thermal desorption process is valuable for the remediation of oil contaminated site. The system is physical separation process by volatizing oil contaminants from soil matrixes and is not designed to provide high levels of oil destruction. The process is not incineration, because the decomposition of oil materials is not the desired result, although some decomposition may occur. The physical and chemical properties that influence the design and operation of the system include boiling points, soil sorption characteristics, aqueous phase solubility, thermal stability, contaminating oil concentration, moisture contents, particle size distribution and etc.

  • PDF