• 제목/요약/키워드: inaccuracy

검색결과 454건 처리시간 0.031초

Monitoring bridge scour using dissolved oxygen probes

  • Azhari, Faezeh;Scheel, Peter J.;Loh, Kenneth J.
    • Structural Monitoring and Maintenance
    • /
    • 제2권2호
    • /
    • pp.145-164
    • /
    • 2015
  • Bridge scour is the predominant cause of overwater bridge failures in North America and around the world. Several sensing systems have been developed over the years to detect the extent of scour so that preventative actions can be performed in a timely manner. These sensing systems have drawbacks, such as signal inaccuracy and discontinuity, installation difficulty, and high cost. Therefore, attempts to develop more efficient monitoring schemes continue. In this study, the viability of using optical dissolved oxygen (DO) probes for monitoring scour depths was explored. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The results confirmed that DO levels jumped drastically when sensors became exposed during scour hole evolution, thereby providing discrete measurements of the maximum scour depth. Moreover, the DO probes could detect any subsequent refilling of the scour hole through the deposition of sediments. The effect of soil permeability on the sensing response time was also investigated.

A Spring Back Calculation Model for the Sensitivity Analysis of Tube Design Parameters of Helical Steam Generator

  • Kim, Yong-Wan;Kim, Jong-In;Huh, Hyung;Park, Jin-Seok;Kim, Ji-Ho
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 추계학술발표회요약집
    • /
    • pp.355.2-355
    • /
    • 1999
  • The spnng back phenomena occurring in the coiling process of a steam generator tube induces the dimensional inaccuracy and makes the coiling procedure difficult. In this research, an analytical model was developed to evaluate the amount of the spring back for SMART steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.rocess.

  • PDF

The accuracy of fragility curves of the steel moment-resisting frames and SDOF systems

  • Yaghmaei-Sabegh, Saman;Jafari, Ali;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.243-259
    • /
    • 2021
  • In the present paper, a Monte Carlo-based framework is developed to investigate the accuracy and reliability of analytical fragility curves of steel moment-resisting frames and simple SDOF systems. It is also studied how the effectiveness of incremental dynamic analysis (IDA) and multiple stripes analysis (MSA) approaches, as two common nonlinear dynamic analysis methods, are influenced by the number of records and analysis stripes in fragility curves producing. Results showed that the simple SDOF systems do not provide accurate and reliable fragility curves compared with realistic steel moment-resisting structures. It is demonstrated that, the effectiveness of nonlinear dynamic analysis approaches is dependent on the fundamental period of structures, where in short-period structures, IDA is found to be more effective approach compared with MSA. This difference between the effectiveness of two analysis approaches decreases as the fundamental period of structures become longer. Using of 2 or 3 analysis stripes in MSA approach leads to significant inaccuracy and unreliability in the estimated fragility curves. Additionally, 15 number of ground motion records is recommended as a threshold of significant unreliability in estimated fragility curves, constructed by MSA.

The Inaccuracy of Surface Landmarks for the Anterior Approach to the Cervical Spine in Southern Chinese Patients

  • Ko, Tin Sui;Tse, Michael Siu Hei;Wong, Kam Kwong;Wong, Wing Cheung
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1123-1126
    • /
    • 2018
  • Study Design: Observational study. Purpose: To assess the correlational accuracy between the traditional anatomic landmarks of the neck and their corresponding vertebral levels in Southern Chinese patients. Overview of Literature: Recent studies have demonstrated discrepancies between traditional anatomic landmarks of the neck and their corresponding cervical vertebra. Methods: The center of the body of the hyoid bone, the upper limit of the lamina of the thyroid cartilage, and the lower limit of the cricoid cartilage were selected as representative surface landmarks for this investigation. The corresponding vertebral levels in 78 patients were assessed using computed tomography. Results: In both male and female patients, almost none of the anatomical landmarks demonstrated greater than 50% correlation with any vertebral level. The most commonly corresponding vertebra of the hyoid bone, the lamina of the thyroid cartilage, and the cricoid cartilage were the C4 (47.5%), C5 (35.9%), and C7 (42.3%), respectively, which were all different from the classic descriptions in textbooks. The vertebral levels corresponding with the thyroid and cricoid cartilage were significantly different between genders. Conclusions: The surface landmarks of the neck were not accurate enough to be used as the sole determinant of vertebral levels or incision sites. Intra-operative fluoroscopy is necessary to accurately locate each of the cervical vertebral levels.

탄소섬유강화 복합재료 성형시 화학수축에 의한 변형연구 (Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage)

  • 최은성;김위대
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.404-411
    • /
    • 2018
  • 복합재료는 주어진 경화 사이클(cure cycle)로 오토클레이브 공정이 진행됨에 따라 수지의 화학수축, 열팽창계수 등에 의한 제품 내 잔류응력(residual stress)이 발생한다. 이로 인해 spring-in, warpage와 같은 열 변형이 발생하고 최종 제품의 수치 정확성이 감소한다. 구조물의 정밀한 제작이 요구되는 항공우주분야에서는 열변형으로 인한 문제를 해결하는 것이 중요하다. 따라서 복합재료의 경화과정을 예측하고 이해하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 공정과정에 따른 복합재료의 경화메커니즘을 유한요소해석을 통해 예측하였고, 공정에 의해 발생하는 열변형에 대한 화학수축의 영향을 열팽창계수와 비교하여 분석하였다.

실측 철도 진동 데이터베이스를 이용한 철도진동 평가 시스템 개발 (Development of Railway Vibration Evaluation System Using Actual Railway Vibration Database)

  • 이현준;서은성;황영섭
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권4호
    • /
    • pp.153-162
    • /
    • 2019
  • 최근 철도소음으로 인해 발생하는 궤도 주변 구조물의 민원 방지와 궤도 주변 산업단지의 초정밀 장비들의 정상적인 운영을 위해 철도 진동을 정량적으로 평가할 수 있는 기술개발이 필요하다. 기존의 해석적인 방법은 매우 복잡한 동적 응답 모델이 요구되며, 요구 모델의 부정확성으로 인한 결과의 신뢰성을 확보하기 어려운 문제가 있다. 따라서, 본 논문에서는 철도 진동에 영향을 주는 요소들을 분류한 국내 철도진동 실측 데이터베이스를 기반으로 Linear Regression, Gradient Descent 기법을 이용해 철도 운행으로부터 발생되는 진동값을 추론하는 철도진동 평가 알고리즘 및 시스템을 제안한다. 제안된 알고리즘으로 얻은 추론결과는 기존의 해석적 방법에 비해 높은 효율성과 정확성을 보인다.

Conditional Signal-Acquisition Parameter Selection for Automated Satellite Laser Ranging System

  • Kim, Simon;Lim, Hyung-Chul;Kim, Byoungsoo
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권2호
    • /
    • pp.97-103
    • /
    • 2019
  • An automated signal-acquisition method for the NASA's space geodesy satellite laser ranging (SGSLR) system is described as a selection of two system parameters with specified probabilities. These parameters are the correlation parameter: the minimum received pulse number for a signal-acquisition and the frame time: the minimum time for the correlation parameter. The probabilities specified are the signal-detection and false-acquisition probabilities to distinguish signals from background noise. The steps of parameter selection are finding the minimum set of values by fitting a curve and performing a graph-domain approximation. However, this selection method is inefficient, not only because of repetition of the entire process if any performance values change, such as the signal and noise count rate, but also because this method is dependent upon system specifications and environmental conditions. Moreover, computation is complicated and graph-domain approximation can introduce inaccuracy. In this study, a new method is proposed to select the parameters via a conditional equation derived from characteristics of the signal-detection and false-acquisition probabilities. The results show that this method yields better efficiency and robustness against changing performance values with simplicity and accuracy and can be easily applied to other satellite laser ranging (SLR) systems.

보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 - (Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches)

  • 김현주;박소현;이선재
    • 대한건축학회논문집:계획계
    • /
    • 제35권1호
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.

Production automation system for three-dimensional template pieces used to evaluate shell plate completeness

  • Son, Seunghyeok;Kim, Byeongseop;Ryu, Cheolho;Hwang, Inhyuck;Jung, ChangHwan;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.116-128
    • /
    • 2020
  • In the shipbuilding industry, three-dimensional (3D) templates play a key role in the completeness evaluation of shell plates with a large curvature in the shell-plate fabrication process. Currently, the information of 3D templates from a ship computer-aided design system is limited; thus, manufacturers depend on their experience to produce the templates manually. This results in the inaccuracy of templates in addition to increased production time. Therefore, if the pieces of the 3D templates can be produced automatically with accurate information, the lead time of the fabrication process can be reduced. In this study, we define a new type of template piece and develop methods for extending a boundary template and converting manufacturing information into numerical control machine input. In addition, based on the results of the study, we propose a production automation system for 3D template pieces. This system is expected to reduce the lead time of the fabrication process.

도로 토목 공사 현장에서 UAV를 활용한 위성 영상 지도의 정확도 분석 (Accuracy Analysis of Satellite Imagery in Road Construction Site Using UAV)

  • 신승민;반창우
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.753-762
    • /
    • 2021
  • Google provides mapping services using satellite imagery, this is widely used for the study. Since about 20 years ago, research and business using drones have been expanding. Pix4D is widely used to create 3D information models using drones. This study compared the distance error by comparing the result of the road construction site with the DSM data of Google Earth and Pix4 D. Through this, we tried to understand the reliability of the result of distance measurement in Google Earth. A DTM result of 3.08 cm/pixel was obtained as a result of matching with 49666 key points for each image. The length and altitude of Pix4D and Google Earth were measured and compared using the obtained PCD. As a result, the average error of the distance based on the data of Pix4D was measured to be 0.68 m, confirming that the error was relatively small. As a result of measuring the altitude of Google Earth and Pix4D and comparing them, it was confirmed that the maximum error was 83.214m, which was measured using satellite images, but the error was quite large and there was inaccuracy. Through this, it was confirmed that there are difficulties in analyzing and acquiring data at road construction sites using Google Earth, and the result was obtained that point cloud data using drones is necessary.