• Title/Summary/Keyword: in-vehicle time

Search Result 4,234, Processing Time 0.033 seconds

An Application of k-Means Clustering to Vehicle Routing Problems (K-Means Clustering의 차량경로문제 적용연구)

  • Ha, Je-Min;Moon, Geeju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • This research is to develop a possible process to apply k-means clustering to an efficient vehicle routing process under time varying vehicle moving speeds. Time varying vehicle moving speeds are easy to find in metropolitan area. There is a big difference between the moving time requirements of two specific delivery points. Less delivery times are necessary if a delivery vehicle moves after or before rush hours. Various vehicle moving speeds make the efficient vehicle route search process extremely difficult to find even for near optimum routes due to the changes of required time between delivery points. Delivery area division is designed to simplify this complicated VRPs due to time various vehicle speeds. Certain divided area can be grouped into few adjacent divisions to assume that no vehicle speed change in each division. The vehicle speeds moving between two delivery points within this adjacent division can be assumed to be same. This indicates that it is possible to search optimum routes based upon the distance between two points as regular traveling salesman problems. This makes the complicated search process simple to attack since few local optimum routes can be found and then connects them to make a complete route. A possible method to divide area using k-means clustering is suggested and detailed examples are given with explanations in this paper. It is clear that the results obtained using the suggested process are more reasonable than other methods. The suggested area division process can be used to generate better area division promising improved vehicle route generations.

Design of Real-Time Vehicle Information Management Platform Using an IoT-based Gateway (IoT기반 게이트웨이를 활용한 실시간 차량 정보 관리 플랫폼 설계)

  • Chang, Moon-Soo;Lee, Jeong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.548-551
    • /
    • 2018
  • Most vehicles are in the form of maintenance when a problem occurs by the user himself or herself. During maintenance, users are not able to operate the car while it is being serviced, and if the target vehicle is a revenue-generating vehicle, they will have to bear economic losses. Collecting vehicle information in real time, identifying problems that could arise with a vehicle based on the collected big data and providing advance service rather than after-sales service can help secure vehicle operation and reduce economic loss. Thus, in this thesis, a platform was designed to design IoT-based gateways, collect real-time vehicle information, and organize big data to provide vehicle information in real time.

  • PDF

Heuristic for Vehicle Routing Problem with Perishable Product Delivery (식품 배송의 특성을 고려한 차량경로문제의 발견적 해법)

  • Kang, Kyung Hwan;Lee, Young Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.265-272
    • /
    • 2007
  • The purpose of Vehicle Routing Problem (VRP) is to design the least costly (distance, time) routes for a fleet of identically capacitated vehicles to serve geographically scattered customers. There may be some restrictions such as the maximal capacity for each vehicle, maximal distance for each vehicle, time window to visit the specific customers, and so forth. This paper is concerned with VRP to minimize the sum of elapsed time from departure, where the elapsed time is defined as the time taken in a moving vehicle from the depot to each customer. It is important to control the time taken from departure in the delivery of perishable products or foods, whose freshness may deteriorate during the delivery time. An integer linear programming formulation is suggested and a heuristic for practical use is constructed. The heuristic is based on the set partitioning problem whose performances are compared with those of ILOG dispatcher. It is shown that the suggested heuristic gave good solutions within a short computation time by computational experiments.

Vehicle Routing Problems with Time Window Constraints by Using Genetic Algorithm (유전자 알고리즘을 이용한 시간제약 차량경로문제)

  • Jeon, Geon-Wook;Lee, Yoon-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.75-82
    • /
    • 2006
  • The main objective of this study is to find out the shortest path of the vehicle routing problem with time window constraints by using both genetic algorithm and heuristic. Hard time constraints were considered to the vehicle routing problem in this suggested algorithm. Four different heuristic rules, modification process for initial and infeasible solution, 2-opt process, and lag exchange process, were applied to the genetic algorithm in order to both minimize the total distance and improve the loading rate at the same time. This genetic algorithm is compared with the results of existing problems suggested by Solomon. We found better solutions concerning vehicle loading rate and number of vehicles in R-type Solomon's examples R103 and R106.

A heuristic algorithm for the multi-trip vehicle routing problem with time windows (시간제약을 가진 다회방문 차량경로문제에 대한 휴리스틱 알고리즘)

  • Kim Mi-Lee;Lee Yeong-Hun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1740-1745
    • /
    • 2006
  • This paper is concerned with a novel heuristic algorithm for the multi-trip vehicle routing problem with time windows. The objective function is the minimization of total vehicle operating time, fixed cost of vehicle and the minimization of total lateness of customer. A mixed integer programming formulation and a heuristic algorithm for a practical use are suggested. A heuristic algorithm is constructed two phases such as clustering and routing. Clustering is progressed in order to assign appropriate vehicle to customer, and then vehicle trip and route are decided considering traveling distance and time window. It is shown that the suggested heuristic algorithm gives good solutions within a short computation time by experimental result.

  • PDF

A Survey on the Real Time Vehicle Routing Problems (실시간 차량 경로 계획 문제의 연구 동향)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.155-166
    • /
    • 2008
  • During last two decades the transportation system has developed into very intelligent system with GIS, GPS and ITS. The practical transportation management system provides real time response module to manage the customer's order. We have surveyed research papers on the real time vehicle routing problem in last two decades to figure out the dynamic vehicle routing problem. The papers are classified by basic routing algorithms and by managing the dynamic events which are the order management, the routing re-optimization, the routing post-optimization and the waiting strategy.

A Stop-and-Go Cruise Control Strategy with Guaranteed String Stability (String Stability를 보장하는 정지/서행 순항제어 시스템)

  • 박요한;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.227-233
    • /
    • 2002
  • A vehicle longitudinal control strategy with guaranteed string stability for vehicle stop-and-go(SG) cruise control is presented in this paper. The SG cruise control systems should be designed such that string stability can be guaranteed in addition to that every vehicle in a string of SG cruise control vehicles must track any bounded acceleration and velocity profile of its preceding vehicle with a bounded spacing and velocity error. An optimal vehicle following control law based on the information of the 1311owing distance (clearance) and its velocity relative to the vehicle ahead (relative velocity) has been used and string stability analysis has been done based on the control law and constant time gap spacing policy, A validated multi-vehicle simulation package has been shown that the string stability analysis using the approximate model of the vehicle servo-loop which includes vehicle powertrain and brake control system dynamics is valid in the design of the SG cruise control law with guaranteed string stability.

WAVELET ANALYSIS OF VEHICLE NONSTATIONARY VIBRATION UNDER CORRELATED FOUR-WHEEL RANDOM EXCITATION

  • Wang, Y.S.;Lee, C.M.;Zhang, L.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.257-268
    • /
    • 2004
  • The wavelet analysis method is introduced in this paper to study the nonstationary vibration of vehicles. A new road model, a so-called time domain correlated four-wheel road roughness, which considers the coherence relationships between the four wheels of a vehicle, has been newly developed. Based on a vehicle model with eight degrees of freedom, the analysis of nonstationary random vibration responses was carried out in a time domain on a computer. Verification of the simulation results show that the proposed road model is more accurate than previous ones and that the simulated responses are credible enough when compared with some references. Furthermore, by taking wavelet analysis on simulated signals, some substantial rules of vehicle nonstationary vibration, such as the relationship between each vibration level, and how the vibration energy flows on a time-frequency map, beyond those from conventional spectral analysis, were revealed, and these will be of much benefit to vehicle design.

Real Time Vehicle Detection and Counting Using Tail Lights on Highway at Night Time (차량의 후미등을 이용한 야간 고속도로상의 실시간 차량검출 및 카운팅)

  • Valijon, Khalilov;Oh, Ryumduck;Kim, Bongkeun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.135-136
    • /
    • 2017
  • When driving at night time environment, the whole body of transports does not visible to us. Due to lack of light conditions, there are only two options, which is clearly visible their taillights and break lights. To improve the recognition correctness of vehicle detection, we present an approach to vehicle detection and tracking using finding contour of the object on binary image at night time. Bilateral filtering is used to make more clearly on threshold part. To remove unexpected small noises used morphological opening. In verification stage, paired tail lights are tracked during their existence in the ROI. The accuracy of the test results for vehicle detection is about 93%.

  • PDF

A real-time multiple vehicle tracking method for traffic congestion identification

  • Zhang, Xiaoyu;Hu, Shiqiang;Zhang, Huanlong;Hu, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2483-2503
    • /
    • 2016
  • Traffic congestion is a severe problem in many modern cities around the world. Real-time and accurate traffic congestion identification can provide the advanced traffic management systems with a reliable basis to take measurements. The most used data sources for traffic congestion are loop detector, GPS data, and video surveillance. Video based traffic monitoring systems have gained much attention due to their enormous advantages, such as low cost, flexibility to redesign the system and providing a rich information source for human understanding. In general, most existing video based systems for monitoring road traffic rely on stationary cameras and multiple vehicle tracking method. However, most commonly used multiple vehicle tracking methods are lack of effective track initiation schemes. Based on the motion of the vehicle usually obeys constant velocity model, a novel vehicle recognition method is proposed. The state of recognized vehicle is sent to the GM-PHD filter as birth target. In this way, we relieve the insensitive of GM-PHD filter for new entering vehicle. Combining with the advanced vehicle detection and data association techniques, this multiple vehicle tracking method is used to identify traffic congestion. It can be implemented in real-time with high accuracy and robustness. The advantages of our proposed method are validated on four real traffic data.