• Title/Summary/Keyword: in-vehicle time

Search Result 4,228, Processing Time 0.036 seconds

Intelligent Traffic Light using Fuzzy Neural Network

  • Park, Myeong-Bok;You-Sik, Hong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.66-71
    • /
    • 2003
  • In the past, when there were few vehicles on the road, the T.O.D.(Time of Day) traffic signal worked very well. The T.O.D. signal operates on a preset signal cycling which cycles on the basis of the average number of average passenger cars in the memory device of an electric signal unit. Today, with increasing traffic and congested roads, the conventional traffic light creates startup-delay time and end lag time so that thirty to forty-five percent efficiency in traffic handling is lost, as well as adding to fuel costs. To solve this problem, this paper proposes a new concept of optimal green time algorithm, which reduces average vehicle waiting time while improving average vehicle speed using fuzzy rules and neural networks. Through computer simulation, this method has been proven to be much more efficient than fixed time interval signals. Fuzzy Neural Network will consistanly improve average waiting time, vehicle speed, and fuel consumption.

DEVELOPMENT OF INVERTER AND POWER CAPACITORS FOR MILD HYBRID VEHICLE (MHV) - TOYOTA "CROWN"

  • Shida, Y.;Kanda, M.;Ohta, K.;Furuta, S.;Ishii, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • The 42V Mild Hybrid System has been released into market by Toyota for the first time in the world in 2001. The set-up employs an inverter unit to control the motor/generator (MG) electronically. The driving system called such as Toyota Mild Hybrid System (TMHS) has additional new functions to conventional internal combustion engines. When stopping vehicle, the engine stops promptly. When starting vehicle, by releasing the brake pedal MG starts the vehicle at the same time (EV-driving mode). When stepping on the accelerator pedal, or after a given period of time the engine firing occurs and the engine-driving mode starts. When running by motor, the power is supplied to the motor from 36V battery through the inverter. High outputs and instant responses are required for Inverter. At the same time, the compact volume is required to fit into the limited space of the engine room. The compact size and high output are also required to Power Capacitor used for this inverter. The power capacitors has been newly developed, shaped in "flat" type, suitably for the inverter. The points of developments on inverter and power capacitor are described in this paper.his paper.

STABLE AUTONOMOUS DRIVING METHOD USING MODIFIED OTSU ALGORITHM

  • Lee, D.E.;Yoo, S.H.;Kim, Y.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • In this paper a robust image processing method with modified Otsu algorithm to recognize the road lane for a real-time controlled autonomous vehicle is presented. The main objective of a proposed method is to drive an autonomous vehicle safely irrespective of road image qualities. For the steering of real-time controlled autonomous vehicle, a detection area is predefined by lane segment, with previously obtained frame data, and the edges are detected on the basis of a lane width. For stable as well as psudo-robust autonomous driving with "good", "shady" or even "bad" road profiles, the variable threshold with modified Otsu algorithm in the image histogram, is utilized to obtain a binary image from each frame. Also Hough transform is utilized to extract the lane segment. Whether the image is "good", "shady" or "bad", always robust and reliable edges are obtained from the algorithms applied in this paper in a real-time basis. For verifying the adaptability of the proposed algorithm, a miniature vehicle with a camera is constructed and tested with various road conditions. Also, various highway road images are analyzed with proposed algorithm to prove its usefulness.

Accelerated Durability Analysis of Suspension System (Suspension System의 가속내구해석)

  • 민한기;정종안;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

An Efficient Vehicle Routing Heuristic for Various and Unsymmetric Forward and Backward Vehicle Moving Speed (왕복비대칭 가변이동속도에서의 효율적 배송차량경로 탐색해법 연구)

  • Moon, Geeju;Park, Sungmee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • An efficient vehicle routing heuristic for different vehicle moving times for forward and backward between two points is studied in this research. Symmetric distance or moving times are assumed to move back and forth between two points in general, but it is not true in reality. Also, various moving speeds along time zones are considered such as the moving time differences between rush hours or not busy daytimes. To solve this type of extremely complicated combinatorial optimization problems, delivery zones are specified and delivery orders are determined for promising results on the first stage. Then delivery orders in each zone are determined to be connected with other zones for a tentative complete delivery route. Improvement steps are followed to get an effective delivery route for unsymmetric-time-varing vehicle moving speed problems. Performance evaluations are done to show the effectiveness of the suggested heuristic using computer programs specially designed and developed using C++.

OPTIMIZATION ON VEHICLE FUEL CONSUMPTION IN A HIGWAY BUS USING VEHICLE SIMULATION

  • Lyu, M.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.841-846
    • /
    • 2006
  • This paper presents a numerical approach to optimizing vehicle fuel economy in a higway bus. The method described is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum number of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.

Vehicle Tracking using Parametric Active Contour (Parametric Active Contour를 이용한 Vehicle Tracking)

  • 나상일;이웅희;조익환;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1411-1414
    • /
    • 2003
  • In this paper, vehicle tracking is implemented using parametric active contour. Extract objects from the background area is the essential step in vehicle tracking. We focus our algorithm on the situations such that the camera is fixed. However, if a simple and ordinary algorithm is adapted to achieve real-time processing, it produces much noise and the vehicle tracking results is poor. For this reason, in this paper, we propose a parametric active contour model algorithm to achieve better vehicle tracking. Experimental results show that the performance of the proposed algorithm is satisfactory.

  • PDF

A Study on the Vehicle Dynamic Characteristics Considering Powertrain and Brake Systems (동력전달계와 제동계를 고려한 차량의 운동 특성에 관한 연구)

  • Bae, Sang-Woo;Lee, Chi-Bum;Yun, Jung-Rak;Lee, Jang-Moo;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.684-689
    • /
    • 2000
  • In this paper, the equations of motion about vehicle, powertrain and brake system were derived. The vehicle has eight degrees of freedom with nonlinear tire model and the powertrain has two degrees of freedom containing engine, torque converter and four speed automatic transmission. The brake system has two states about front and rear brake line pressures. The transient tire model with first order time lag is also subjoined for low speed or stop-and-go simulation. The modeling was derived considering two points - the fidelity and the simplicity. The simulation using this model is similar with real vehicle dynamic behavior and the model is made as simple as possible far fast simulation. It is validated that the derived vehicle model can be applicable to the real time simulation.

  • PDF

Analysis of Dynamic Characteristics for Four-Wheel-Steering Automated Guided Vehicle(AGV) System (4륜 조향 무인 컨테이너 차량(AGV) 시스템의 동특성 분석)

  • 최재영;이영진;변성태;이권순;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.306-306
    • /
    • 2000
  • This paper analyze the dynamic characteristics of Automated Guided Vehicle(AGV) which is being developed as a part of automation in port through DADS, one of the multi-dynamic analysis program, Previous evaluation of a vehicle is carried out through the continuous driving test of a real vehicle, however this method raise the loss of finance and time. If it is possible to analyze the dynamic characteristics of vehicle before construction completely we can compensate the loss of money and time during constructing. AGV contained containers is very heavy and its center of gravity can be easily changed with the disturbance from road or cornering. It makes AGV unsatisfied, therefore we evaluate the handling characteristics and stability of the full vehicle model. This paper contribute to establish the foundation of the development of a new system like a AGV which have a special structure.

  • PDF

Electro Sensitive Traffic Light using Fuzzy Look Up Table

  • Hong, You-Sik;Park, Chong-Kug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.596-700
    • /
    • 1998
  • Nowadays, with increasing many vehicles on restricted roads, the conventional traffic light creates prove startup-delaytime and end-lag-time. The conventional traffic light loses the function of optimal cycle. And so, 30∼45% of conventional traffic cycle is not matched to the present traffic cycle. In this paper proposes electrosensitive traffic light using fuzzy look up table method which will reduce the average vehicle waiting time and improve average vehicle speed. Computer simulation results prove that reducing the average vehicle waiting time which proposed considering passing vehicle length for optimal traffic cycle is better than fixed signal method which doesn't consider vehicle length.

  • PDF