• Title/Summary/Keyword: in-vehicle network system

Search Result 787, Processing Time 0.025 seconds

Communication Interoperability of Electric Uehicle Charging Infrastructure and Grid Network (전기차 충전 인프라와 전력망 간의 통신 상호운용성 연구)

  • Ju, Seunghwan;Lee, Ilho;Song, Sanghoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • ISO/IEC 15118 is a standard for communications and services for electric vehicle charging infrastructure. Although this standard deals only with data communication between an electric vehicle and a charge station, communication with the outside is essential for establishing an authentication system for vehicle certification and V2G service for electric power transmission. In this study, it was designed to verify the information of electric car charging infrastructure in electric power system through communication link between ISO/IEC 15118 electric vehicle model and IEC 61850 standard MMS protocol. This is demonstrated in the field so that the electric vehicle communication data is linked with the micro grid management system. This could be used as an element technology in other distributed power sources as well as electric cars in the future.

Development of Traffic Congestion Prediction Module Using Vehicle Detection System for Intelligent Transportation System (ITS를 위한 차량검지시스템을 기반으로 한 교통 정체 예측 모듈 개발)

  • Sin, Won-Sik;Oh, Se-Do;Kim, Young-Jin
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.

Disign of Unmanned Vehicle Control System with LoRa Network (LoRa망을 활용한 무인이동체 관제 시스템 설계)

  • Lee, Jae-Ung;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.44-46
    • /
    • 2018
  • In this paper, we design a system that can control unmanned mobile objects through communication between unmanned mobile object and control server system using LoRa network which is a dedicated IoT network. It is more efficient when the unmanned mobile object performs the special work by installing the LoRa network applied to the unmanned mobile object control system from the small space house or office hospital to the factory. In this paper, we will discuss the design of a system that can improve the social utilization of unmanned mobile objects by making it possible to communicate the events that occur around other mobile objects from the simplification of the navigation path.

  • PDF

Authentication Scheme using Biometrics in Intelligent Vehicle Network (지능형 자동차 내부 네트워크에서 생체인증을 이용한 인증기법)

  • Lee, Kwang-Jae;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • Studies on the intelligent vehicles that are fused with IT and intelligent vehicle technologies are currently under active discussion. And many new service models for them are being developed. As intelligent vehicles are being actively developed, a variety of wireless services are support. As such intelligent vehicles use wireless network, they are exposed to the diverse sources of security risk. This paper aims to examine the factors to threaten intelligent vehicle, which are usually intruded through network system and propose the security solution using biometric authentication technique. The proposed security system employs biometric authentication technique model that can distinguish the physical characteristics of user.

Estimation of Optimal Passenger Car Equivalents of TCS Vehicle Types for Expressway Travel Demand Models Using a Genetic Algorithm (고속도로 교통수요모형 구축을 위한 유전자 알고리즘 기반 TCS 차종별 최적 승용차환산계수 산정)

  • Kim, Kyung Hyun;Yoon, Jung Eun;Park, Jaebeom;Nam, Seung Tae;Ryu, Jong Deug;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.97-105
    • /
    • 2015
  • PURPOSES : The Toll Collection System (TCS) operated by the Korea Expressway Corporation provides accurate traffic counts between tollgates within the expressway network under the closed-type toll collection system. However, although origin-destination (OD) matrices for a travel demand model can be constructed using these traffic counts, these matrices cannot be directly applied because it is technically difficult to determine appropriate passenger car equivalent (PCE) values for the vehicle types used in TCS. Therefore, this study was initiated to systematically determine the appropriate PCE values of TCS vehicle types for the travel demand model. METHODS : To search for the appropriate PCE values of TCS vehicle types, a traffic demand model based on TCS-based OD matrices and the expressway network was developed. Using the traffic demand model and a genetic algorithm, the appropriate PCE values were optimized through an approach that minimizes errors between actual link counts and estimated link volumes. RESULTS : As a result of the optimization, the optimal PCE values of TCS vehicle types 1 and 5 were determined to be 1 and 3.7, respectively. Those of TCS vehicle types 2 through 4 are found in the manual for the preliminary feasibility study. CONCLUSIONS : Based on the given vehicle delay functions and network properties (i.e., speeds and capacities), the travel demand model with the optimized PCE values produced a MAPE value of 37.7%, RMSE value of 17124.14, and correlation coefficient of 0.9506. Conclusively, the optimized PCE values were revealed to produce estimates of expressway link volumes sufficiently close to actual link counts.

Properties of a Social Network Topology of Livestock Movements to Slaughterhouse in Korea (도축장 출하차량 이동의 사회연결망 특성 분석)

  • Park, Hyuk;Bae, Sunhak;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.33 no.5
    • /
    • pp.278-285
    • /
    • 2016
  • Epidemiological studies have shown the association between transportation of live animals and the potential transmission of infectious disease between premises. This finding was also observed in the 2014-2015 foot-and-mouth disease (FMD) outbreak in Korea. Furthermore, slaughterhouses played a key role in the global spread of the FMD virus during the epidemic. In this context, in-depth knowledge of the structure of direct and indirect contact between slaughterhouses is paramount for understanding the dynamics of FMD transmission. But the social network structure of vehicle movements to slaughterhouses in Korea remains unclear. Hence, the aim of this study was to configure a social network topology of vehicle movements between slaughterhouses for a better understanding of how they are potentially connected, and to explore whether FMD outbreaks can be explained by the network properties constructed in the study. We created five monthly directed networks based on the frequency and chronology of on- and off-slaughterhouse vehicle movements. For the monthly network, a node represented a slaughterhouse, and an edge (or link) denoted vehicle movement between two slaughterhouses. Movement data were retrieved from the national Korean Animal Health Integrated System (KAHIS) database, which tracks the routes of individual vehicle movements using a global positioning system (GPS). Electronic registration of livestock movements has been a mandatory requirement since 2013 to ensure traceability of such movements. For each of the five studied networks, the network structures were characterized by small-world properties, with a short mean distance, a high clustering coefficient, and a short diameter. In addition, a strongly connected component was observed in each of the created networks, and this giant component included 94.4% to 100% of all network nodes. The characteristic hub-and-spoke type of structure was not identified. Such a structural vulnerability in the network suggests that once an infectious disease (such as FMD) is introduced in a random slaughterhouse within the cohesive component, it can spread to every other slaughterhouse in the component. From an epidemiological perspective, for disease management, empirically derived small-world networks could inform decision-makers on the higher potential for a large FMD epidemic within the livestock industry, and could provide insights into the rapid-transmission dynamics of the disease across long distances, despite a standstill of animal movements during the epidemic, given a single incursion of infection in any slaughterhouse in the country.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Analysis of Network Topology for Distributed Control System in Railroad Trains (철도차량용 분산형 제어시스템을 위한 네트워크 토폴로지 분석)

  • Hwang, Hwanwoong;Kim, Jungtai;Lee, Kang-Won;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.21-29
    • /
    • 2015
  • For higher reliability against component failures in railroad trains with many electronic sensors and actuators, a distributed control system with which all electronic components are connected via a network is being considered. This paper compares and analyzes various topologies of Ethernet network for a railroad train in the aspects of (1) failure recovery, (2) the number of ports per device, (3) the number of cable connections between vehicles, and (4) performance. Especially, the unique characteristic of a train system that the number of vehicles changes is considered through analysis. Various combinations of in- and inter-vehicle topologies are considered. In addition, we introduce a hybrid of star and daisy-chain topology for inter-vehicle connection when the maximum number of inter-vehicle connections is limited to reduce possible failures of inter-vehicle connections. Simulation results show performance comparison between different topology combinations; the hybrid topology is shown to enhance delay performance even with a highly limited number of inter-vehicle connections.

Long Short-Term Memory Network for INS Positioning During GNSS Outages: A Preliminary Study on Simple Trajectories

  • Yujin Shin;Cheolmin Lee;Doyeon Jung;Euiho Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.137-147
    • /
    • 2024
  • This paper presents a novel Long Short-Term Memory (LSTM) network architecture for the integration of an Inertial Measurement Unit (IMU) and Global Navigation Satellite Systems (GNSS). The proposed algorithm consists of two independent LSTM networks and the LSTM networks are trained to predict attitudes and velocities from the sequence of IMU measurements and mechanization solutions. In this paper, three GNSS receivers are used to provide Real Time Kinematic (RTK) GNSS attitude and position information of a vehicle, and the information is used as a target output while training the network. The performance of the proposed method was evaluated with both experimental and simulation data using a lowcost IMU and three RTK-GNSS receivers. The test results showed that the proposed LSTM network could improve positioning accuracy by more than 90% compared to the position solutions obtained using a conventional Kalman filter based IMU/GNSS integration for more than 30 seconds of GNSS outages.

Feature Area-based Vehicle Plate Recognition System(VPRS) (특징 영역 기반의 자동차 번호판 인식 시스템)

  • Jo, Bo-Ho;Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1686-1692
    • /
    • 1999
  • This paper describes the feature area-based vehicle plate recognition system(VPRS). For the extraction of vehicle plate in a vehicle image, we used the method which extracts vehicle plate area from a s vehicle image using intensity variation. For the extraction of the feature area containing character from the extracted vehicle plate, we used the histogram-based approach and the relative location information of individual characters in the extracted vehicle plate. The extracted feature area is used as the input vector of ART2 neural network. The proposed method simplifies the existing complex preprocessing the solves the problem of distortion and noise in the binarization process. In the difficult cases of character extraction by binarization process of previous method, our method efficiently extracts characters regions and recognizes it.

  • PDF