• 제목/요약/키워드: in-structure amplification

검색결과 253건 처리시간 0.028초

Gold-sapphire Plasmonic Nanostructures for Coherent Extreme-ultraviolet Pulse Generation

  • Han, Seunghwoi
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.576-582
    • /
    • 2022
  • Plasmonic high-order harmonic generation (HHG) is used in nanoscale optical applications because it can help in realizing a compact coherent ultrashort pulse generator on the nanoscale, using plasmonic field enhancement. The plasmonic amplification of nanostructures induces nonlinear optical phenomena such as second-order harmonic generation, third-order harmonic generation, frequency mixing, and HHG. This amplification also causes damage to the structure itself. In this study, the plasmonic amplification according to the design of a metal-coated sapphire conical structure is theoretically calculated, and we analyze the effects of this optical amplification on HHG and damage to the sample.

전력설비의 내진설계를 위한 변전소 구조형식에 따른 가속도 증폭계수의 평가 (Evaluation of Acceleration Amplification Factors Based on the Structural Type of Substation for the Seismic Design of Power Facilities)

  • 박성제;전낙현;황경민;문지호;송종걸
    • 한국전산구조공학회논문집
    • /
    • 제33권3호
    • /
    • pp.159-169
    • /
    • 2020
  • 변전소 구조물 내부에 설치되는 전력설비의 내진설계 시 사용되는 변수인 가속도 증폭계수는 미국, 일본과 국내의 변전소 내진설계기준에서 제시되어 있다. 국내 설계기준에 제시된 가속도 증폭계수는 미국, 일본의 설계기준에서 제시된 계수와는 달리 변전소 구조물의 층수가 4층 이상일 경우에는 동적해석을 수행하여 가속도 증폭계수를 구하게 되어 있다. 국내의 변전소 구조물은 대부분 층수가 4~5층이므로 기존의 가속도 증폭계수는 실제 변전소 구조물에 적용하기에 미흡한 상황이다. 국내 변전소 구조물 형식에 적합한 가속도 증폭계수를 제시하기 위하여 대표적인 7가지 구조형식의 변전소 구조물에 대하여 가속도 증폭계수를 평가하였다. 가속도증폭계수는 변전소 구조물에 대하여 원거리 지진과 근거리 지진을 사용하여 내부-구조물 응답스펙트럼을 작성하여 이로부터 평가하였다. 미국, 일본 전력설비 내진설계 기준에 따른 각각의 가속도 증폭계수 αJ, αA는 근거리 및 원거리 지진을 사용한 동적 해석으로 구한 가속도 증폭계수에 비하여 다소 과대평가하는 경향이 있다.

Evaluation of seismic design provisions for acceleration-sensitive non-structural components

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.611-623
    • /
    • 2019
  • A set of mid-rise bare and uniformly infilled reinforced-concrete frame buildings are analyzed for two different seismic intensities of ground-motions (i.e., 'Design Basis Earthquake' and 'Maximum Considered Earthquake') to study their floor response. The crucial parameters affecting seismic design force for acceleration-sensitive non-structural components are studied and compared with the guidelines of the European and the United States standards, and also with the recently developed NIST provisions. It is observed that the provisions of both the European and the United States standards do not account for the effects of the period of vibration of the supporting structure and seismic intensity of ground-motions and thereby provides conservative estimates of the in-structure amplification. In case of bare frames, the herein derived component amplification factors for both the design basis earthquake and the maximum considered earthquake exceeds with their recommended values in the European and the United States standards for non-structural components having periods in vicinity of the higher modes of vibration, whereas, in case of infilled frames, component amplification factors exceeds with their recommended value in the European standard for non-structural components having periods in vicinity of the fundamental mode of vibration, and only for the design basis earthquake. As a consequence of these observations, as well as capping on the design force (in case of United states standard and NIST provisions), in case of the design basis earthquake, the combined amplification factor is underestimated for non-structural components having periods in vicinity of the higher modes of vibration of bare frames, and also for non-structural components having periods in vicinity of the fundamental mode of vibration of infilled frames. At the maximum considered earthquake demand, excepting non-structural components having periods in vicinity of the higher modes of vibration of bare frames, all provisions generally provide conservative estimates of the design floor accelerations.

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

Design and Performance Evaluation of Extension-Type Actuators with a Displacement Amplification Mechanism Based on Chevron Beam

  • Jo, Yehrin;Lee, Euntaek;Kim, Yongdae
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.1-9
    • /
    • 2021
  • In this study, a new design of an extension-type actuator (ExACT) is proposed based on a chevron structure with displacement amplification mechanisms by local heating. ExACT comprises diamond-shaped displacement amplification structures (DASs) containing axially oriented V-shaped chevron beams, a support bar that restricts lateral heat deformation, and a loading slot for thin-film heaters. On heating the thin film heater, the diamond-shaped DASs undergo thermal expansion. However, lateral expansion is restricted by the support bar, leading to displacement amplification in the axial direction. The performance parameters of ExACT such as temperature distribution and extended displacement is calculated using thermo-mechanical analysis methods with the finite element method (FEM) tool. Subsequently, the ExACTs are fabricated using a polymer-based 3D printer capable of reproducing complex structures, and the performance of ExACTs is evaluated under various temperature conditions. Finally, the performance evaluation results were compared with those of the FEM analysis.

Effects of the earth fissure on the seismic response characteristics of a nearby metro station

  • Jiang Chang;Yahong Deng;Huandong Mu
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.53-64
    • /
    • 2023
  • Earth fissures with several kilometers will inevitably approach or cross the metro line, significantly threatening the safety of the underground structure in the earth fissure site. However, the influence of the earth fissure site's amplification effect on the metro station's dynamic response is still unclear. A representative earth fissure in Xi'an was taken as an example to establish a numerical model of a metro station in the earth fissure site. The dynamic response characteristics of the metro stations at different distances from the earth fissure under various seismic waves were calculated. The results show that the existence of the earth fissure significantly amplifies the dynamic response of the nearby underground structures. The responses of the axial force, shear force, bending moment, normal stress, horizontal displacement, inter-story drift, and relative slip of the metro station were all amplified within a specific influence range. The amplification effect increases with the seismic wave intensity. The amplification effect caused by the earth fissure has relatively weak impacts on the axial shear, shear force, bending movement, normal stress, and horizontal movement; slightly larger impacts on the inter-story drift and acceleration; and a significant impact on the relative slip. The influence ranges of the axial force and normal stress are approximately 20 m. The influence ranges of the acceleration and inter-story drift can reach 30 m. Therefore, the seismic fortification level of the underground structure in the earth fissure site needs to be improved.

강성제어 구조물을 이용한 수평구동형 박막 PZT 엑츄에이터의 설계, 제작 및 특성평가 (Design, Fabrication and Characterization of Lateral PZT actuator using Stiffness Control)

  • 서영호;최두선;이준형;이택민;제태진;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.756-759
    • /
    • 2004
  • We present a piezoelectric actuator using stiffness control and stroke amplification mechanism in order to make large lateral displacement. In this work, we suggest stiffness control approach that generates lateral displacement by increasing the vertical stiffness and reducing the lateral stiffness using additional structure. In addition, an additional structure of a serpentine spring amplifies the lateral displacement like leverage structure. The suggested lateral PZT actuator (bellows actuator) consists of serpentine spring and PZT/electrode layer which is located at the edge of the serpentine spring. The edge of the serpentine spring prevents the vertical motion of PZT layer, while the other edge of the serpentine spring makes stroke amplification like leverage structure. We have determined dimensions of the bellows actuator using ANSYS simulation. Length, width and thickness of PZT layer are 135$\mu$m, 20$\mu$m and 0.4$\mu$m, respectively. Dimensions of the silicon serpentine spring are thickness of 25$\mu$m, length of 300$\mu$m, and width of 5$\mu$m. The bellows actuator has been fabricated by SOI wafer with 25$\mu$m-top silicon and 1$\mu$m-buried oxide layer. The bellows actuator shows the maximum 3.93$\pm$0.2$\mu$m lateral displacement at 16V with 1Hz sinusoidal voltage input. In the frequency response test, the fabricated bellows actuator showed consistent displacement from 1Hz to 1kHz at 10V. From experimental study, we found the bellows actuator using thin film PZT and silicon serpentine spring generated mainly laterally displacement not vertical displacement at 16V, and serpentine spring played role of stroke amplification.

  • PDF

Dynamic interaction effects of buried structures on seismic response of surface structures

  • Sisman, Rafet;Ayvaz, Yusuf
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2020
  • This study presents an investigation of the dynamic interactions between a surface structure lying on two different soil deposits and a square-shaped buried structure embedded in the soil. To this end, a large number of numerical models are generated by using a well-known Finite Element Method software, i.e., OpenSEES. The interaction phenomenon is assumed to be affected by six different parameters. In the parametric study, these parameters are assumed to have various values in accordance with the engineering practices. A total of 1620 possible combinations of the parameter values are addressed in this study. 30 different numerical models are also generated as the 'free-field cases' to set a reference. The surface structure drift and acceleration amplifications are used as a measure to evaluate the dynamic interactions. The response (i.e., drifts and accelerations) amplifications are calculated as the ratio of the maximum surface structure response in any 'case' to the maximum surface structure response in corresponding free-field case. Variation of the response amplifications with any of the investigated parameters is addressed in this paper. The results obtained from the numerical analyses clearly reveal that the presence of a buried structure in the vicinity of a surface structure can cause both amplification and de-amplification of the surface structure responses, depending on the case parameters.

파랑에너지 집적 및 연안해역 제어를 위한 해저구조물의 설계 (Design of a Submerged Coastal Structure for Concentration of Wave Energy and Control of a Coastal Area)

  • 이중우;한스 크록
    • 한국항만학회지
    • /
    • 제8권2호
    • /
    • pp.37-56
    • /
    • 1994
  • The effects of wave energy focusing by a submerged berm type of structure is examined. The fundamental idea is based on the phenomenon of refraction by a lens-shaped crescent structure which results in the focusing of wave energy on the center line of the structure. The shape of the submerged structure is a complex curve combining circular with elliptical elements. Based on the design procedure, a special configuration of structure(termed herein as a triple crescent structure) is introduced. Next, some hydraulic model tests are performed to confirm the wave focusing effect in laboratory. In addition, in order to interpret the wave focusing performance behind the structure, a numerical procedure by the hybrid element method is used on the basis of the conventional mild slope equation but modified and extended to allow for steeper bottom slopes and higher curvature. The modified refraction and diffraction provide additional mechanism for wave height amplification and the maximum amplification for triple crescent structure is presented. It also allows for the possibility of wave energy scattering with the change of the incident wave direction. Comparisons with previous theoretical results involving a submerged crescent shape structure are described.

  • PDF