• 제목/요약/키워드: in-situ removal

검색결과 216건 처리시간 0.026초

동전기 기술과 계면활성제를 이용한 clay에서의 Phenanthrene 제거

  • 박지연;이현호;조현정;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.121-124
    • /
    • 2000
  • In-situ soil remediation using electrokinetics has been investigated and the attempts for the removal of hydrocarbons have been continued. In this study, the electrokinetic remediation using three different kinds of surfactnats was conducted for the removal of phenanthrene from clay The used surfactnats were APG, Brij30 and SDS. In the solubility test for phenanthrene, the experimental result was APG

  • PDF

Microbial Community Analysis of 5-Stage Biological Nutrient Removal Process with Step Feed System

  • Park, Jong-Bok;Lee, Han-Woong;Lee, Soo-Youn;Lee, Jung-Ok;Bang, Iel-Soo;Park, Eui-So;Park, Doo-Hyun;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.929-935
    • /
    • 2002
  • The 5-stage biological nutrient removal (BNR) process with step feed system showed a very stable organic carbon and nutrient removal efficiency ($87\%\;COD\,;79\%\;nitrogen,\;and\;87\%$ phosphorus) for an operation period of 2 years. In each stage at the pilot plant, microbial communities, which are important in removing nitrogen and phosphorus, were investigated using fluorescence in-situ hybridization (FISH) and 165 rDNA characterization. All tanks of 5-stage sludge had a similar composition of bacterial communities. The totat cell numbers of each reactor were found to be around $2.36-2.83{\times}10^9$ cells/ml. About $56.5-62.0\%$ of total 4,6-diamidino-2-phenylindol (DAPI) cells were hybridized to the bacterial-specific probe EUB388. Members of ${\beta}$-proteobacteria were the most abundant proteobacterial group, accounting for up to $20.6-26.7\%$. The high G+C Gram-positive bacterial group and Cytophaga-Flexibacter cluster counts were also found to be relatively high. The beta subclass proteobacteria did not accumulate a large amount of polyphosphate. The proportion of phosphorus-accumulating organisms (PAOs) in the total population of the sludge was almost $50\%$ in anoxic-1 tank. The high G+C Gram-positive bacteria and Cytophaga-Flexibacter cluster indicate a key role of denitrifying phosphorus-accumulating organisms (dPAOs). Both groups might be correlated with some other subclass of proteobacteria for enhancing nitrogen and phosphorus removal in this process.

산업단지내 독성유기화합물 및 중금속으로 오염된 토양의 정화복원기술 상용화 연구

  • 김수곤;손규동;박지연;최희철;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.31-34
    • /
    • 2004
  • Feasibility of electrokinetic(EK)-Fenton process and Ozone chemical oxidation were investigated for tile removal of organic contaminants and heavy metals from the contaminated soil. In EK-Fenton process, accumulated electroosmotic flow(EOF) was 80 L for 26 days. Removal efficiency of TPH, As, and Ni were 61%, 36%, and 47%, respectively. The concentration of As was high near the anode due to the transport of anionic As toward the anode, while the concentration of Ni was high near the cathode by the movement of cationic Ni to the cathode. Field scale application of in-situ ozonation was carried out for removal of TPH in 3-D test cell (3 m$\times$2 m$\times$2 m). After 25 days of ozone injection, more than 80% of removal rate was observed through the test cell.

  • PDF

기계식 스크루 브러쉬 콘필터를 이용한 조류 제거에 관한 연구 (A Study on the Removal of Algae by a Mechanical Screw Brush Cone Filter)

  • 김도희
    • 한국환경과학회지
    • /
    • 제26권2호
    • /
    • pp.201-210
    • /
    • 2017
  • This study was conducted to estimate the removal efficiency of algae by a mechanical Screw Brush Cone Filter in a lake. The device used a stainless steel cone-shaped filter with a screw brush. The ability of the developed device to remove algae larger than $20{\mu}m$ in Lake ChaSa, Gwangyang city was tested from August to September 2014. The results show that the removal rates for chlorophyll-a, suspended solids and volatile suspended solids were 44-87%(mean 61%), 35-54%(mean 40%), and 37-46%(mean 43%), respectively. This study also discusses equipment and device operation costs and device application problems, and suggests in situ. solutions to these problems.

Electrokinetic Soil Flushing with Nonionic Surfactant for Removal of Phenanthrene

  • 이유진;박지연;김상준;기대정;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.356-359
    • /
    • 2003
  • Polycyclic aromatic hydrocarbons (PAHs) are representative hydrophobic organic carbons (HOCs). Surfactant-enhanced electrokinetic (EK) remediation is an innovative in-situ technology that can effectively remove HOCs from low-permeability soils. In this study, the electrokinetic remediation using Tergitol 15-S-12, a nonionic surfactant, was conducted for the removal of phenanthrene from kaolinite. Tergitol 15-S-12 was used at concentrations of 1.5, 2.0, 2.5 and 7.5 g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, high electrical potential gradient was maintained and the amount of electroosmotic flow decreased. Removal efficiency of phenanthrene was proportional to the concentration of Tergitol 15-S-12 because the solubility and mobility of phenanthrene was enhanced by surfactant micelle. Therefore, the suitable concentration of nonionic surfactant Tergitol 15-S-12 is expected to improve the removal efficiency of PAHs in EK remediation.

  • PDF

연속회분반응기의 아질산 축적 특성과 질산화 및 탈질 미생물의 정량적 분포 연구 (Nitrite Accumulation Characteristics and Quantitative Analyses of Nitrifying and Denitrifying Bacteria in a Sequencing Batch Reactor)

  • 김동진;권현진;윤정이;차기철
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.383-390
    • /
    • 2008
  • Recently, the interests on economical nitrogen removal from wastewater are growing. As a method of the novel nitrogen removal technology, nitrogen removal via nitrite pathway by selective inhibition of free ammonia and free nitrous acid on nitrite oxidizing bacteria have been intensively studied. The inhibition effects of free ammonia and free nitrous acid are low when domestic wastewater is used, however, because of its relatively lower nitrogen concentration than the wastewater from industry and landfill, etc. In this study, a sequencing batch reactor (SBR) is proposed for nitrogen removal to investigate the effect of the low nitrogen concentration on nitrite accumulation. Nitrification efficiency reached almost 100% during the aerobic cycle and the maximum specific nitrification rate ($V_{max,nit}$) reached $17.8mg\;NH_4{^+}-N/g\;MLVSS{\bullet}h$. During the anoxic cycle, average denitrification efficiency reached 87% and the maximum specific denitrification rate ($V_{max,den}$) reached $9.8mg\;NO_3{^-}-N/g\;MLVSS{\bullet}h$. From the analysis the main reason of nitrite accumulation in the SBR was free nitrous acid rather than free ammonia. Nitrite accumulation increased with the decrease of organic content in the wastewater and the mechanism is not well understood yet. From the result of fluorescent in situ hybridization, the distribution of nitrite oxidizing bacteria was in equilibrium with ammonium oxidizing bacteria when nitrite accumulation did not occur.

Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험 (Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies)

  • 이충섭;오다솜;조성희;이진욱;장윤석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.117-126
    • /
    • 2015
  • Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by nanoscale zero-valent iron (nZVI) was investigated to evaluate the feasibility of using it for in-situ groundwater remediation. Batch experiments were conducted to quantify the kinetics and efficiency of RDX removal by nZVI, and to determine the effects of pH, dissolved oxygen (DO), and ionic strength on this process. Experimental results showed that the reduction of RDX by nZVI followed pseudo-first order kinetics with the observed rate constant (kobs) in the range of 0.0056-0.0192 min−1. Column tests were conducted to quantify the removal of RDX by nZVI under real groundwater conditions and evaluate the potential efficacy of nZVI for this purpose in real conditions. In column experiment, RDX removal capacity of nZVI was determined to be 82,500 mg/kg nZVI. pH, oxidation-reduction potential (ORP), and DO concentration varied significantly during the column experiments; the occurrence of these changes suggests that monitoring these quantities may be useful in evaluation of the reactivity of nZVI, because the most critical mechanisms for RDX removal are based on the chemical reduction reactions. These results revealed that nZVI can significantly degrade RDX and that use of nZVI could be an effective method for in-situ remediation of RDX-contaminated groundwater.

임관 제거가 루브라참나무림의 셀룰로오스 분해와 질소 무기화에 미치는 영향 (Effects of Canopy Removal on Cellulose Decomposition and Nitrogen Mineralization in Quercus rubra Stands)

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • 제18권2호
    • /
    • pp.219-230
    • /
    • 1995
  • Although many studies of nutrient cycling in forest ecosystems have reported that clearcutting creates increased organic matter decomposition and nitrogen (N) mineralization in soils, little is known about the change of these factors following various levels of canopy removal. A series of experimental plots with four levels of canopy cover, i.e., clearcut, 25%, 75%, and uncut, was established in northern red oak (Quercus rubra L.) stands in northern Lover Michigan, U.S.A. I examined decomposition of cellulose filter papers and N mineralization using an in situ soil incubation technique in the top 15cm of mineral soil during the second growing season (1992, May-October) following stand manipulation. Mass loss from cellulose filter papers was more rapid in the canopy removal treatments than in the uncut treatment. similarly, net N mineralization was significantly greater in the canopy removal treatments than in the uncut treatment. There was no significant difference in net N mineralization rates among the three levels of canopy removal. Net N mineralization for the growing season was 58 kg/ha for the clearcut, 54 kg/ha for the 25% canopy cover, 51 kg/ha for the 75% canopy cover, and 22 kg/ha for the uncut treatment. These results indicated that even only small amounts of canopy removal (leaving 75% canopy cover) let to substantial increases of cellulose decomposition and the amount of available soil nitrogen.

  • PDF

REMEDIATION OF GROUNDWATER CONTAMINATED WITH BENZENE (LNAPL) USING IN-SITU AIR SPARGING

  • Reddy, Krishna R.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.11-24
    • /
    • 2003
  • This paper presents the results of laboratory investigation performed to study the role of different air sparging system parameters on the removal of benzene from saturated soils and groundwater. A series of one-dimensional experiments was conducted with predetermined contaminant concentrations and predetermined injected airflow rates and pressures to investigate the effect of soil type and the use of pulsed air injection on air sparging removal efficiency. On the basis of these studies, two-dimensional air sparging remediation systems were investigated to determine the effect of soil heterogeneity on the removal of benzene from three different homogeneous and heterogeneous soil profiles. This study demonstrated that the grain size of the soils affects the air sparging removal efficiency. Additionally, it was observed that pulsed air injection did not offer any appreciable enhancement to contaminant removal for the coarse sand; however, substantial reduction in system operating time was observed for fine sand. The 2-D experiments showed that air injected in coarse sand profiles traveled in channels within a parabolic zone. In well-graded sand the zone of influence was found to be wider due to high permeability and increased tortuosity of this soil type. The influence zone of heterogeneous soil (well-graded sand between coarse sand) showed the hybrid airflow patterns of the individual soil test. Overall, the mechanism of contaminant removal using air sparging from different soil conditions have been determined and discussed.

  • PDF

생물학적 회분식 인 제거 공정에서 pH 영향과 미생물 군집의 변화 (Influence of Different Operational pH Conditions to Microbial Community in Biological Sequencing Batch Phosphorus Removal Process)

  • 안조환
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.459-465
    • /
    • 2013
  • A sequencing batch reactor was operated under different pH conditions to see the influence of pH to microbial community in enhanced biological phosphorus removal (EBPR) systems. Long term influences of different steady-state pH conditions on the microbial community composition were evaluated by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). The shift in populations from polyphosphate-accumulating organisms (PAOs) to Alphaproteobacteria was observed when pH was changed from 7.5 to 7.0. Alphaproteobacteria with the typical morphological traits of tetrad-forming organisms (TFOs) eventually became dominant members. The alphaproteobacterial TFOs were the phenotype expected for glycogen-accumulating organisms (GAOs), which accumulate large amount of glycogen into the cell. The results strongly suggested that low operational pH condition encourages the appearance of the GAOs in EBPR process, significantly reducing the EBPR capacity.