• Title/Summary/Keyword: in-situ SEM

Search Result 197, Processing Time 0.028 seconds

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.

Transport Properties of Polypyrrole Films Doped with Sulphonic Acids

  • Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Pierson, R.;Huh, Do-Sung;Venkataraman, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2701-2706
    • /
    • 2009
  • The polymer blends containing polypyrrole (PPy) and the sulphonic acids such as β-naphthalene sulfonic acid (NSA), camphor sulfonic acid (CSA), and dodecylbenzenesulfonic acid (DBSA) were synthesized by in situ deposition technique in an aqueous media using ammonium per sulfate (APS) as an initiator. The obtained films were characterized by scanning electron microscopy (SEM), and the thermal behavior of these polymer blends was analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The temperature-dependent (DC) conductivity of the obtained films shows a semiconducting behavior with a negative temperature coefficient of resistivity (TCR). The conductivity data were also analyzed through Mott’s equation, which provides the variable range hopping model in three dimensions. The parameters such as density of states at the Fermi energy, hopping energy, and hopping distance were calculated for PPy, PPy-NSA, PPy-CSA, and PPy-DBSA films, and the data were compared.

Finite element modeling of a deteriorated R.C. slab bridge: lessons learned and recommendations

  • Ho, I-Kang;Shahrooz, Bahram M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.259-274
    • /
    • 1998
  • The test results from non-destructive and destructive field testing of a three-span deteriorated reinforced concrete slab bridge are used as a vehicle to examine the reliability of available tools for finite-element analysis of in-situ structures. Issues related to geometric modeling of members and connections, material models, and failure criteria are discussed. The results indicate that current material models and failure criteria are adequate, although lack of inelastic out-of-plane shear response in most nonlinear shell elements is a major shortcoming that needs to be resolved. With proper geometric modeling, it is possible to adequately correlate the measured global, regional, and local responses at all limit states. However, modeling of less understood mechanisms, such as slab-abutment connections, may need to be finalized through a system identification technique. In absence of the experimental data necessary for this purpose, upper and lower bounds of only global responses can be computed reliably. The studies reaffirm that success of finite-element models has to be assessed collectively with reference to all responses and not just a few global measurements.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

An approach for deformation modulus mechanism of super-high arch dams

  • Wu, Bangbin;Niu, Jingtai;Su, Huaizhi;Yang, Meng;Wu, Zhongru;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.557-566
    • /
    • 2019
  • The reservoir basin bedrock produced significant impact on the long-term service safety of super-high arch dams. It was important for accurately identifying geomechanical parameters and its evolution process of reservoir basin bedrock. The deformation modulus mechanism research methods of reservoir basin bedrock deformation modulus for super-high arch dams was carried out by finite element numerical calculation of the reservoir basin bedrock deformation and in-situ monitoring data analysis. The deformation modulus inversion principle of reservoir basin bedrock in a wide range was studied. The convergence criteria for determining the calculation range of reservoir basin of super-high arch dams was put forward. The implementation method was proposed for different layers and zones of reservoir basin bedrock. A practical engineering of a super-high arch dam was taken as the example.

Suzuki-Miyaura Cross-coupling Reaction Catalyzed by Nickel Nanoparticles Supported on Poly(N-vinyl-2-pyrrolidone)/TiO2-ZrO2 Composite

  • Kalbasi, Roozbeh Javad;Mosaddegh, Neda
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2584-2592
    • /
    • 2011
  • Nickel nanoparticle-poly(N-vinyl-2-pyrrolidone)/$TiO_2-ZrO_2$ composite (Ni-PVP/$TiO_2-ZrO_2$) was prepared by in situ polymerization method. The physical and chemical properties of Ni-PVP/$TiO_2-ZrO_2$ were investigated by XRD, FT-IR, BET, TGA, SEM and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of methanol-water mixture as solvent. The effects of reaction temperature, the amount of catalyst, amount of support, solvent, and amount of metal for the synthesis of Ni-PVP/$TiO_2-ZrO_2$, were investigated as well as recyclability of the heterogeneous composite. The catalyst used for this synthetically useful transformation showed considerable level of reusability besides very good activity.

An Experimental Study for Manufacturing MPCM Slurry and Its Application to a Cooling System (미립캡슐잠열재 제조 및 축열식 냉방기 적용실험)

  • 이효진;최준규;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.352-359
    • /
    • 2003
  • The present study has been conducted for manufacturing MPCM (microencapsulated phase change material) slurry with in-situ polymerization and proving their applicabilities for tooling system. The surface of MPCM is composed of melamine, while tetradecane, paraffin wax, is centered in the MPCM. The produced capsules are observed by the optical microscope and SEM for superficial shapes. Their thermal properties are measured by DSC. Their size distributions are observed by FA particle analyzer. A narrow size distribution from 1 to 10 ${\mu}{\textrm}{m}$ with 5 ${\mu}{\textrm}{m}$ of average diameter was observed. Melting temperature was 6.7$^{\circ}C$. The durability of MPCM was tested with various types of pump such as centrifugal, peristaltic, and mono pumps. During 10000 cycles the fraction of broken capsules was smaller than 6% for the centrifugal and peristaltic pumps, while bigger value of 8% for the mono pump. A cooling system, which adopted MPCM slurry as a media for transporting cold thermal energy, was designed to investigate the performance of the MPCM. The discharging times of 10 and 20 wt% MPCM slurry were lasted up to 105 and 285 minutes longer, respectively, than the water cooling system.

Effect of process parameters to in-situ textured ZnO film deposited by using PECVD (PECVD 를 이용하여 증착된 ZnO박막의 표면구조에 미치는 공정변수의 영향)

  • Jeong, Hyun-Young;Choo, Won-Il;Choi, Won-Kuk;Kim, Ki-Dong;Kwon, Sung-Ku
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.259-259
    • /
    • 2009
  • 박막태양전지의 효율을 높이기 위한 방법 중 입사된 태양광의 흡수율을 높이기 위한 방법으로 전지의 표면구조를 제어하는 기술이 최근에 활발히 연구되고 있다. 본 연구에서는 박막태양전지의 저가화와 고효율화를 위하여 투명전도막으로 응용되고있는 ZnO박막의 증착속도를 높이는 공정변수의 영향과 수광효과를 개선하기 위하여 최적의 표면구조를 가지는 ZnO박막 증착조건을 찾고자 증착 공정변수에 대하여 실험하였다. 공정변수의 조절에 따라 표면구조의 제어가 가능하였으며 우수한 광학적 특성과 500nm/min 의 높은 증착속도를 얻을 수 있었다. 또한 표면구조와 전기적, 광학적 특성이 긴밀한 관계를 가지는 것을 알 수 있었다. 실험된 공정 변수는 기판온도, 공정압력, 플라즈마 파워, 원료 가스 조성 이며 공정변수에 따른 전기적, 광학적, 구조적, 특성은 FE-SEM, 4Point-probe, XRD, UV-spectroscopy를 이용하여 분석하였다.

  • PDF

Study of EfficienCY of Hydrogen Rich Biodiesel as Reductant for HC-SCR over $Al_2O_3$ Supported Ag Catalyst ($Ag/Al_2O_3$ 촉매하의 HC-SCR에서 환원제로서 수소 풍부 바이오디젤의 반응 특성 연구)

  • Kim, Jin-Gul;Lee, Min-Ju;Lee, He-Min;Jeon, Ji-Yong;Kim, Seong-Soo;Yoo, Seung-Joon
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • $Ag/Al_2O_3$ 촉매하에 디젤 엔진에서 배출되는 NOx를 정화하기 위하여, 수소가 풍부한 바이오디젤을 환원제로 사용하였다. Ag 전구체 함침과정에서 촉매기공이 부분적으로 폐쇄되는 것을 BET 실험을 통하여 관찰하였다. 2% $Ag/Al_2O_3$ 촉매의 형상과 조성은 산처리 과정을 거치더라도 변화하지 않는 것을 SEM과 EDXS 분석으로부터 확인하였다. $Ag/Al_2O_3$ 촉매 표면에서 생성되는 -NCO 와 -CN을 in-Situ DRIFT 방법을 사용하여 관찰하여 HC-SCR에서의 NOx 제거 반응구조를 확인하였다.

ICP-CVD 방법에 의한 TiN diffusion Barrier Thin Film 형성

  • 오대현;강민성;오경숙;양창실;양두훈;이유성;이광만;변종철;최치규
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.118-118
    • /
    • 1999
  • CVD방법에 의한 TiN 박막 형성에 있어서 ICP-CVD 방법이 대두되고 있다. 이것은 precursor에 대한 radical 형성, 식각된 패턴에서 양 벽의 self-shadowing 효과, 낮은 tress등으로 dense 한 박막을 얻을 수 있기 때문이다. TiN 박막은 Si 기판의 온도를 상온에서 50$0^{\circ}C$까지 유지하면서 TEMAT의 유량을 5-20sccm으로 변화시키면서 증착하였다. 증착 후 TiN 박막의 결정화에 따른 열처리는 Ar과 N2-가스분위기에서 in-situ로 증착하였다. 증착 후 TiN 박막증착 조건수립에 따른 플라즈마 특성진단은 전자의 온도와 밀도, 평균 전자밀도, 이온 에너지 분포, radical 분포, negative 이온분포 등으로 측정하였다. 플라즈마 변수에 따른 TiN 박막의 결정성과 상 변화는 XRD로 분석하였고, 조성비 및 TiN 박막의 원소화학적 상태, 결합에너지, 각 상에 따른 결합 에너지 천이정도, 초기 형성과정 및 반응기구 등은 RBS와 XPS로 조사하였다. TiN 박막의 표면상태, morphology 거칠기, TiN/Si(100)구조에서 계면상태 등은 SEM, AFM, 그리고 HRTEM으로 분석하였다. TiN 구조 박막의 비저항, carrier concentration 그리고 mobility 측정은 박막의 표면이 균일하고 bls-홀이 없는 것으로 하여 4-point probe 방법으로 측정하였다. 이들 분석으로부터 ICP-CVD 방법에 의하여 형성된 TiN 박막이 초고집적 반도체 소자의 contact barrier layer로서의 적용 가능성을 평가하였다.

  • PDF