• Title/Summary/Keyword: in-plane permeability

Search Result 52, Processing Time 0.033 seconds

Analysis on Character and Ability of In -Plane Permeability of Geotextiles Used for Darainage (배수용 Geotextlle의 평면투수 성능분석)

  • 이상호
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.61-74
    • /
    • 1992
  • In order to provide fundamental data for the design of geotextile drains, the in-plane permeability coefficients were determined by tests and permeable cllaracteristics were investigated, mainly on domestic nonwoven and composite getextile products used for drainage purpose. The results obtained are as follows, The thickness, the in-plane permeability coefficient and the transmissivity with the in- crease of compressive stress are found to be remarkably decreased when the compressive stress is lass than about 10KN/m2. The inflane permeability of filament nonwovens are found to be lower than that of composites or staple-fiher nonwovens, and the compressibility of the geotextile shown to be larger for the polyester nonwovens than for the polypropylene nonwovens. The relation of compressive stress, q and compressibility, Cr is expressed as Cr=13.37 In q+23.28 and that of compressibility on the basis of 2KN /m2, Cr' and decrease ratio of in-plane permeability coefficient is followed Pr: 1.25Cr'

  • PDF

Out-of-Permeability Measurement of the Braided Preform in Resin Transfer Molding (고분자 수지 이송 성형에서 브레이드 프리폼의 두께방향 투과율 계수 측정)

  • Suk, Chae-Hui;Seok, Song-Yeong;Ryun, Yun-Jae
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.87-90
    • /
    • 2003
  • In Resin transfer molding (RTM), composite parts are produced by impregnation of a dry reinforcement with liquid matrix resin. Permeability is a key issue in this process. For thin parts, the resin flow in the thickness direction can be neglected. Therefore thin parts are considered as two-dimensional composites. However the resin flow through the thickness is important to thicker parts and we have to consider out-of-plane permeability. This work discusses a method to measure out-of-plane permeability. The flow rate and pressure drop across the porous media were measured. Also one dimensional form of Darcy's law is applied to calculate the out-of-plane permeability of various preforms. The flow is injected uniformly into layers of the preform. And a circular fiber mat with 6cm diameter was cut and flattened from cylindrical mandrel.

  • PDF

Measurement of In-plane Gas Permeability of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells under Compressive Strain (고분자 전해질 연료전지 가스확산층의 압축상태 평면 기체투과율 측정)

  • Oh, Changjun;Lee, Yongtaek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.367-372
    • /
    • 2016
  • Gas diffusion layer (GDL) of PEMFCs plays a role that it diffuses the reactant gases to the catalyst layer on the membrane and discharge water from the catalyst layer to the channel. Physical parameters related to the mass transport of GDL are mostly from the uncompressed GDLs while actual GDLs in the assembled stacks are compressed. In this study, the relation of compression and strain of GDLs with various Polytetrafluoroethylene (PTFE) loading is measured experimentally and In-plane gas permeability is measured at the condition that the GDLs are in compressive strain. The gas permeability decreased with the loading of PTFE and the presentation of gas permeability under compressive stain is expected to improve the accuracy of modeling work of mass transport in the GDL.

Plane strain consolidation of a compressible clay stratum by surface loads

  • Rani, Sunita;Puri, Manoj;Singh, Sarva Jit
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.355-374
    • /
    • 2014
  • An analytical solution of the fully coupled system of equations governing the plane strain deformation of a poroelastic medium with anisotropic permeability and compressible fluid and solid constituents is obtained. This solution is used to study the consolidation of a poroelastic clay layer with free permeable surface resting on a rough-rigid permeable or impermeable base. The stresses and the pore pressure are taken as the basic state variables. Displacements are obtained by integrating the coupled constitutive relations. The case of normal surface loading is discussed in detail. The solution is obtained in the Laplace-Fourier domain. Two integrations are required to obtain the solution in the space-time domain which are evaluated numerically for normal strip loading. Consolidation of the clay layer and diffusion of pore pressure is studied for both the bases. It is found that the time settlement is accelerated by the permeability of the base. Initially, the pore pressure is not affected by the permeability of the base, but has a significant effect, as we move towards the bottom of the layer. Also, anisotropy in permeability and compressibilities of constituents of the poroelastic medium have a significant effect on the consolidation of the clay layer.

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

A Comparative Study on Decision of The In-Plane Permeability of the Geotextile (Geotexitile의 평면투수성 결정에 관한 비교연구)

  • 권우남;박희명;이상호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.135-143
    • /
    • 1989
  • The in-plane permeabilities for domestic geotextile products are calculated by some theoretical formulas and compared with them obtained by experiments to examine the suitability of those formulas. The results obtained are as follows: 1. It appears that the diameter of the filament yarn is larger and more uniform than that of the staple fiber according to the microscopic analysis on the geotextile 2. The in-plane permeability of the geotextile shows that the theoretical values by drag and channel theory is close to the experimental ones. 3. The porosity of the geotextile is hardly influenced by normal pressure. 4. In the case of the same thickness of the geotextile the side surface area of the filament yarn is larger than that of the staple fiber. 5. The capillary height of the geotextile shows that the theoretical values is close to the experimental ones and thick geotextile is higher than thin geotextile.

  • PDF

Prediction of Permeability for Multi-axial Braided Preform by Using CVFEM (검사체적 유한요소법을 이용한 다축 브레이드 프리폼의 투과율 계수 예측)

  • Y. S. Song;K. Chung;T. J. Kang;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.68-70
    • /
    • 2002
  • Prediction of 3-D permeability tensor for multi-axial preform is critical to model and design the manufacturing process of composites by considering resin flow through the multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for braided preform are predicted numerically. The flow analyses are calculated by using 3-D CVFEM(control volume finite element method) for macro-unit cells. To avoid checker-board pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytic solutions. Permeability of a braided preform is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Unlike other studies, the current study is based on more realistic unit cell and prediction of permeability is improved.

  • PDF

Permeability Reduction Model of Soil-Geotextile System Induced by Clogging (폐색으로 인한 흙/부직포 시스템의 투수능 저하 모델)

  • 이인모;김주현
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.107-116
    • /
    • 2000
  • In this study, the permeability reduction in the soil-filter systems due to clogging phenomenon was evaluated. An extensive research program was performed using two typical weathered residual soils which were sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil were performed: one was the filtration test(cross-plane flow test); and the other was the drainage material in the field. The compatibility of the sol-filter system was investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system was evaluated by changing several testing conditions. Also, experimental results of the permeability reduction are compared with the results obtained from the theoretical model which can monitor the spatial variation of the permeability with time.

  • PDF

Permeability Reduction of Geotextile Filters Induced by Clogging (폐색으로 인한 부직포의 투수능 저하 현상)

  • ;;Lakshmi N. Reddi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

A Study on Resin Flow through a Multi-layered Preform in Resin Transfer Molding (수지이송성형시 다층 예비성형체 내부에서의 수지유동 및 투과 계수에 관한 연구)

  • Seong, Dong-Gi;Youn, Jae-Ryoun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.176-179
    • /
    • 2001
  • When the preform is composed of more than two layers with different in-plane permeability in resin transfer molding, effective average permeability should be determined for the flow analysis in the mold. The most frequently used averaging scheme is the weighted average scheme, but it does not account for the transverse flow between adjacent layers. A new averaging scheme is proposed predicting the effective permeability of the multi-layered preform, which accounts for the transverse flow effect. The new scheme is verified by measuring the effective permeability of the multi-layered preforms and the difference in each flow front position.

  • PDF