• 제목/요약/키워드: in-plane loading

검색결과 586건 처리시간 0.025초

다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구 (Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths)

  • 박남수;허훈
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.

Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates

  • Kutlu, Darilmaz
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.359-374
    • /
    • 2011
  • In this paper, the influence of fibre orientation and aspect ratio on stability analysis of simply supported skew plates subjected to in plane loading is studied by using a four noded hybrid plate finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Some numerical problems are solved and the effects of skew angle, aspect ratio, fibre orientation and loading type on the critical buckling loads are highlighted.

구조부재의 고유진동수에 대한 하중크기의 영향 (Influence of Loading Sizes on Natural Frequency of Structural Members)

  • 김덕현;한봉구;원치문
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.165-168
    • /
    • 2005
  • In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. Many junior engineers get confused on such relations. It is hoped that this paper gives some guideline to such junior engineers.

  • PDF

X-Plane 기반 비행훈련장치의 FAA Level 5 FTD(Flight Training Device) 인증을 위한 QTG(Qualification Test Guide) 생성방법 연구 (A Study on QTG(Qualification Test Guide) Generation for a Flight Training Device to be Qualifiable at FAA Level 5)

  • 김일우;박태준;윤석준
    • 한국항공우주학회지
    • /
    • 제44권12호
    • /
    • pp.1035-1042
    • /
    • 2016
  • 상용 비행시뮬레이션 게임 엔진 X-Plane을 이용하여 구성한 비행시뮬레이터에 대해 FTD level 5를 만족시킬 수 있는 QTG작성에 대해 연구하였다. 모델은 Cirrus사(社)의 SR-20을 대상으로 하였다. QTG의 테스트항목 중에는 조종반력을 측정하는 항목도 있다. 따라서 Brunner사(社)의 CLS(Control Loading System)을 조종 장치에 설치하여 조종반력을 측정할 수 있도록 구성하였다. X-Plane은 자체적으로 트림루틴을 제공하지 않으므로 외부에서 Autopilot을 구성하여 항공기가 트림상태에 도달할 수 있도록 하였다. 또한 테스트를 자동으로 수행할 수 있는 알고리듬을 개발하여 수동으로 조종하여 테스트하는 번거로움을 피하고 같은 테스트를 같은 조건으로 진행할 수 있도록 하였다. FTD Level 5의 경우 실제 비행데이터가 아닌 alternative data source를 적용할 수 있으며 이를 활용하여 모든 테스트 결과가 주어진 범위를 만족하였다.

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석 (Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading)

  • 김성준;황인희;홍창호
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

Condition assessment of steel shear walls with tapered links under various loadings

  • He, Liusheng;Kurata, Masahiro;Nakashima, Masayoshi
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.767-788
    • /
    • 2015
  • A steel shear wall with double-tapered links and in-plane reference was developed for assisting the assessment of the structural condition of a building after an earthquake while maintaining the original role of the wall as a passive damper device. The double-tapered link subjected to in-plane shear deformation is designed to deform torsionally after the onset of local buckling and works as an indicator of the maximum shear deformation sustained by the shear wall during an earthquake. This paper first examines the effectiveness of double-tapered links in the assessment of the structural condition under various types of loading. A design procedure using a baseline incremental two-cycle loading protocol is verified numerically and experimentally. Meanwhile, in-plane reference links are introduced to double-tapered links and greatly enhance objectivity in the inspection of notable torsional deformation with the naked eye. Finally, a double-layer system, which consists of a layer with double-tapered links and a layer with rectangular links made of low-yield-point steel, is tested to demonstrate the feasibility of realizing both structural condition assessment and enhanced energy dissipation.

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

바닥하중 및 면내압축력을 받는 플렛 플에이트 슬래브 (Reinforced Concrete Flat plates Under Combined In-plane and Out-of-plane Loads)

  • 박홍근;김의회;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.424-429
    • /
    • 1998
  • Numerical studies are performed to investigate the behavior of flat plates under combined in-plane and out-of-plane loads. The numerical model is verified by comparison with experiments for plates simply supported on four edges. Through study on different load combination and loading sequence, the critical load condition that governs the strength of the flat plate is determined. Parametric studies are performed to investigate the buckling coefficient and the effective flexural rigidity so that the moment magnification method is applicable to the flat plates.

  • PDF

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.