• Title/Summary/Keyword: in-network processing

Search Result 6,239, Processing Time 0.04 seconds

무선 센서 네트워크에서 이동 싱크 그룹의 분리를 지원하기 위한 라우팅 프로토콜 (Energy-Efficient Division Protocol for Mobile Sink Groups in Wireless Sensor Network)

  • 장재영;이의신
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2017
  • 무선 센서 네트워크에서 구조 팀이나 군대의 소대처럼 이동 싱크 그룹에서 통신은 이동성을 제어하기 위해 새로운 도전 문제를 가져온다. 이를 위해, 이동 싱크 그룹을 지원해주기 위한 많은 연구가 제안되었다. 이동 싱크 그룹에서 이들은 어플리케이션의 특성에 따라 다수의 작은 그룹으로 분리 될 수 있다. 예를 들면, 전쟁에서 소대는 임무를 수행하기 위해 다수의 분대로 분리 될 수 있다. 그러나, 이전 연구들은 이동 싱크 그룹의 분리에 의해 발생되는 세가지 이슈를 다루지 않기 때문에 이동 싱크 그룹의 분리를 효율적으로 지원할 수 없다. 첫 번째 이슈는 새로운 작은 이동 싱크 그룹을 위한 리더 싱크를 선정하는 것이다. 소스로부터 작은 이동 싱크 그룹까지 효율적을 데이터를 전송하는 것이 두 번째 이슈이다. 마지막으로, 세 번째 이슈는 작은 이동 싱크 그룹들의 리더 싱크들 사이에 데이터를 공유하는 것이다. 그러므로, 본 논문은 이러한 세가지 이슈를 해결하는 것에 의해 이동 싱크 그룹의 분리를 효율적으로 지원하기 위한 라우팅 프로토콜을 제안한다. 첫 번째 이슈를 위해, 제안 프로토콜은 새로운 리더 싱크와 이전 리더 싱크 사이의 거리와 새로운 리더 싱크로부터 이것의 모든 멤버 싱크까지의 거리의 합이 최소가 되도록 새로운 작은 이동 싱크 그룹의 리더 싱크를 선정한다. 두 번째 이슈의 소스로부터 작은 이동 싱크 그룹까지의 효율적인 데이터 전송을 위해, 제안 프로토콜은 소스와 리더 싱크들의 위치 정보를 통한 계산을 통하여 소스로부터 작은 이동 싱크 그룹까지의 데이터 전송 거리를 최소화하기 위한 경로를 결정한다. 세 번째 이슈와 관련하여, 제안 프로토콜은 멤버 싱크들의 위치 정보를 고려하여 리더 싱크들 사이에 효율적인 데이터 공유를 제옥하기 위한 리더 싱크들 사이의 멤버 싱크를 이용한다. 시뮬레이션 결과는 제안 프로토콜이 이전 프로토콜에 비해 에너지 소비의 관점에서 우수함을 증명한다.

인간언어공학에의 활용을 위한 이종 개념체계 간 사상 - 세종의미부류와 KorLexNoun 1.5 - (Mapping Heterogenous Ontologies for the HLP Applications - Sejong Semantic Classes and KorLexNoun 1.5 -)

  • 배선미;임경업;윤애선
    • 인지과학
    • /
    • 제21권1호
    • /
    • pp.95-126
    • /
    • 2010
  • 본 연구에서는 인간언어공학에서의 활용을 위해 매우 이질적인 세종전자사전의 의미부류(SJSC)와 KorLexNoun 1.5(KLN)의 상위노드 간의 사상을 목표로, '의미 입자(sense grain)가 작은 개념체계(fine-grained ontology)' 간 귀납적이며 상향적인 수동 사상 방법론을 제안하였다. 동시에 이종 자원 간의 사상에 있어 각 의미체계의 이질성 때문에 발생하는 여러 가지 문제점을 살펴보고, 그 해결방안도 제안하였다. 두 이종 개념체계 간의 사상 방법은 SJSC의 단말 노드와 KLN의 Least Upper Bound(LUB)를 기본단위로 하여, 첫째, 어휘 분포를 이용하여 사상 후보군을 결정하고, 둘째, 계층 관계와 정의문과 용례를 이용하여 후보군들 간의 정확한 의미구분을 하며, 셋째, 상 하위-자매노드에 SJSC의 적정술어 및 정의문을 적용하여 LUB의 단계를 결정하고, 넷째, 양 의미체계의 계층관계를 비교함으로써 SJSC의 단말 노드와의 사상 여부를 판단하며, 마지막으로 KLN의 오류 및 전문용어 후보군은 사상에서 제외하였다. 이와같이 본 연구에서는 단계별 사상 준거의 설정에 있어 각 의미체계에 기술되어 있는 다양한 언어정보를 적극 이용하였는데, 이는 세밀한 수동 사상의 장점이라 할 수 있다. 본 연구에서 제안한 방법으로 사상한 결과, SJSC의 474개의 단말 및 비단말 노드와 KLN의 신셋(synset) 간에는 중복을 제외하고 6,487개의 LUB가 사상되었으며, 각 LUB의 하위노드를 포함해서는 모두 88,255개의 KLN 신셋이 사상되어 전체적으로는 97.91%가 사상되었다. 본 연구의 결과는 정교한 한국어 통사 및 의미 분석에 활용될 수 있을 것이다.

  • PDF

천리안 해양위성 2호 산출물 및 품질관리 계획 (Introduction on the Products and the Quality Management Plans for GOCI-II)

  • 이순주;이경상;한태현;문정언;배수정;최종국
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1245-1257
    • /
    • 2021
  • 세계 최초의 정지궤도 해색관측 위성인 GOCI의 임무를 승계한 천리안위성 2B호의 해양탑재체인 GOCI-II가 2020년 2월 발사되어 같은 해 10월부터 정규 운영되고 있다. 한국해양과학기술원은 실시간 수신한 GOCI-II 원시자료를 Level 1B와 26종 Level 2 산출물로 처리하며, 이 자료들은 국립해양조사원을 통해 서비스된다. 이 논문에서는 정규 운영 1년차의 위성자료 운영 현황을 소개하고, 향후 개선 방향을 제시하고자 하였다. GOCI-II의 기본 해색 산출물인 엽록소 농도, 총 부유물질 농도, 용존유기물 농도 산출물은 OC4, YOC 알고리즘으로 처리 중이며, 그 수식 및 프로세스에 대해 상세 기술하였다. GOCI-II에서 새롭게 추가된 전구 관측은 궤도상 시험운영기간 동안 태양천정각과 sun glint만 고려하여 관측 스케줄이 수립되었으나, 양질의 Level 2 산출물 생산을 위해 조건을 세분화하고 위성 천정각을 추가 고려하여 개선하였다. 그 결과 'Best Ocean'을 만족하는 슬롯의 개수가 15에서 78개로 대폭 증가하고, 'Bad Ocean'에 해당하는 슬롯이 55개에서 13개로 크게 감소하였다. GOCI-II의 산출물의 품질관리를 위해서 유럽우주국에서 정의하는 요구사항을 기반으로 GOCI-II 검보정 요구사항을 제시하였다. 그리고 GOCI 검보정 사이트를 기반으로 하되, 향상된 위성 스펙을 고려하여 지역 관측 검보정을 위한 추가 고정점 검보정 사이트 후보지를 제시하였다. 전구관측 자료의 품질관리는 국내외 해양인프라를 구축하고 있는 한국해양과학기술원의 연구선과 해외 기지를 활용하되, 국외 해역의 현장관측 자료 획득을 위해서는 GOCI-II 국제 검보정 네트워크 구축이 필요할 것으로 판단된다. 이러한 결과는 위성자료 사용자들의 산출물 처리에 대한 이해를 높이고, 향후 위성자료 품질관리 업무 수행 상세계획 수립에 도움이 될 것으로 기대된다.

딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성 (True Orthoimage Generation from LiDAR Intensity Using Deep Learning)

  • 신영하;형성웅;이동천
    • 한국측량학회지
    • /
    • 제38권4호
    • /
    • pp.363-373
    • /
    • 2020
  • 정사영상 생성을 위한 많은 연구들이 진행되어 왔다. 기존의 방법은 정사영상을 제작할 경우, 폐색지역을 탐지하고 복원하기 위해 항공영상의 외부표정요소와 정밀 3D 객체 모델링 데이터가 필요하며, 일련의 복잡한 과정을 자동화하는 것은 어렵다. 본 논문에서는 기존의 방법에서 탈피하여 딥러닝(DL)을 이용하여 엄밀정사영상을 제작하는 새로운 방법을 제안하였다. 딥러닝은 여러 분야에서 더욱 급속하게 활용되고 있으며, 최근 생성적 적대 신경망(GAN)은 영상처리 및 컴퓨터비전 분야에서 많은 관심의 대상이다. GAN을 구성하는 생성망은 실제 영상과 유사한 결과가 생성되도록 학습을 수행하고, 판별망은 생성망의 결과가 실제 영상으로 판단될 때까지 반복적으로 수행한다. 본 논문에서 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 라이다 반사강도 데이터와 적외선 정사영상을 GAN기반의 Pix2Pix 모델 학습에 사용하여 엄밀정사영상을 생성하는 두 가지 방법을 제안하였다. 첫 번째 방법은 라이다 반사강도영상을 입력하고 고해상도의 정사영상을 목적영상으로 사용하여 학습하는 방식이고, 두 번째 방법에서도 입력영상은 첫 번째 방법과 같이 라이다 반사강도영상이지만 목적영상은 라이다 점군집 데이터에 칼라를 지정한 저해상도의 영상을 이용하여 재귀적으로 학습하여 점진적으로 화질을 개선하는 방법이다. 두 가지 방법으로 생성된 정사영상을 FID(Fréchet Inception Distance)를 이용하여 정량적 수치로 비교하면 큰 차이는 없었지만, 입력영상과 목적영상의 품질이 유사할수록, 학습 수행 시 epoch를 증가시키면 우수한 결과를 얻을 수 있었다. 본 논문은 딥러닝으로 엄밀정사영상 생성 가능성을 확인하기 위한 초기단계의 실험적 연구로서 향후 보완 및 개선할 사항을 파악할 수 있었다.

수정된 Neocognitron을 사용한 필기체 한글인식 (Study on the Neural Network for Handwritten Hangul Syllabic Character Recognition)

  • 김은진;백종현
    • 인지과학
    • /
    • 제3권1호
    • /
    • pp.61-78
    • /
    • 1991
  • 본 논문은 역행 통로(backward path)를 가진 수정된 Neocognitron 을 한글 음절 인식을 위해 적용한 결과에 관한 것이다. Fukushima의 논문에서 Neocognitron이 $19{\times}19$ 크기의 필기체 숫자를 인식할 수있다고 논술하였다. 본 논문에서는 스캐너 또는 마우스를 이용하여 필기체 한글 문자 또는 그 일부의 $61{\times}61$ 영상을 입력하였다. 수정된 Neocognitron은 3쌍의 Us, Uc층으로 구성되어있다. 본 신경회로망에서 마지막 인식층인 Uc층은 $5{\times}5$ 크기의 세포로 된 24개의 명(plane)으로 구성되어 있는데, 각각의 세포들은 동시에 주의력(attention)을 받아들이느 자소(grapheme)의 존재와 입력층에서의 상대적 위치를 구별할 수 있다. 본 신경회로망은 10개의 단모음 자소, 14개의 단자음 자소와 그들의 공간적 특징을 가지고 학습시켰다. 쉽게 학습되지 않는 패턴들은 여러번 학습시켰다. 왜곡, 잡음, 크기변화, 변형, 회전 등을 갖는 개개의 자소를 분류할 수 있도록 학습된 신경망을 한글 음절의 인식을 위해 사용하였으며, 음절자내의 영상 분할 작업을 위해 선택적 주의력 기법을 사용하였다. 입력문자에 대한 초기 표본 실험에서 본 모형은 필기체 한글 음절자의 시험패턴중 79%를 정확하게 인식하였다. 이 연구결과는 Neocognitron이 입력 영상을 인식가능한 부분으로 분할함으로써 큰크기의 분자 집합을 갖는 필기체 문자를 인식할수 있는 강력한 모형임을 시사해준다. 똑같은 접근 방법이 구조나 자소가 아주 복잡한 한자의 인식에도 적용될 수 있다고 본다. 그러나, 모의실험에서 처리시간에 있어 매우 심한 병목현상을 보여 주었다. 모형의 실질적인 사용을 위해서는 신경칩으로서의 구현이 선결되어야 할 것이다. 또, 복모음, 복자음으로 구성된 한글 음절자 인식을 위하여 모형에 대한 더 깊은 연구가 수행되어질 필요가 있다. 두개의 단자모사이의 이웃지역을 정확히 인식하는 것은 이렇나 작업을 위해 매우 중요한 일이 될 것이다.

Research on the influence of web celebrity live broadcast on consumer's purchase intention - Adjusting effect of web celebrity live broadcast contextualization

  • Zou, Ji-Kai;Guo, Han-Wen;Liu, Zi-Yang
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.239-250
    • /
    • 2020
  • 이 논문의 목적은 전자 상거래 플랫폼에서 웹 유명인 생방송의 "컨텍스트 화"효과가 소비자의 제품 가치, 위험 및 구매 의도에 대한 인식에 미치는 영향을 탐구하는 것입니다. 본 논문에 실은 Taobao 쇼핑 소비자를 연구 대상으로 사용, 설문 조사 방법, 설문 조사가 채택되었으며, 설문 및 분산 네트워크를 통한 형태, 소비자 구매에 대한 실제 상황 영향의 웹 유명인 효과에 대한 웹 유명인 효과의 추가 검증을 위해 라이브 의도, 설문지는 데이터 처리 후 통계 소프트웨어 SPSS 23.0 및 AMOS 22.0을 사용하여 리 커트 스케일, 7 및 재활용 설문지 분석을 설계합니다. 설문지의 신뢰성과 타당성을 결정한 후, 탐색 요소 분석을 사용하여 가설을 검증하고 소비자의 구매 의도에 대한 웹 유명 인사 생방송의 "문맥 화"효과의 실제 조정 정도를 계산했습니다. 본 논문의 연구 결과는 다음과 같이 요약된다 : (1) 소비자의 제품에 대한인지 된 가치는 구매 의도에 중대한 영향을 미칠 수있는 반면,인지 된 위험은 구매 의도에 상당히 부정적인 영향을 미친다. (2) 제품에 대한 소비자의 신뢰와 구매 의도는 웹 유명 인사 생방송의 "컨텍스트 화"에 의해 규제됩니다. 특히, "컨텍스트 화"효과가 우수한 웹 유명인 라이브 방송의 경우 소비자 제품의 인지 된 가치는 제품 신뢰에 긍정적 인 영향을 미칩니다. 이는 "컨텍스트 화"효과가 좋지 않은 웹 유명인 라이브 방송의 가치보다 높습니다. 제품에 대한 소비자의인지 된 위험을 해결하는 관점에서, "컨텍스트 화"효과가 우수한 웹 유명인 라이브 방송은 "컨텍스트 화"효과가 낮은 웹 유명인 라이브 브로드 캐스트보다 훨씬 우수합니다. 이 논문은 경험적 분석을 바탕으로 웹 연예인 생방송이 전자 상거래 산업의 지속 가능한 성장을위한 새로운 돌파구가 될 것이며 전자 상거래 마케팅 모드와 웹 연예인 생방송 산업의 변화에 대한 제안을 제시 할 것이라고 결론을 내렸다.

소셜네트워크 빅데이터를 활용한 코로나 19에 따른 프로야구 관람문화조사 (Professional Baseball Viewing Culture Survey According to Corona 19 using Social Network Big Data)

  • 김기탁
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권6호
    • /
    • pp.139-150
    • /
    • 2020
  • 본 연구의 자료처리는 텍스톰(textom)과 소셜미디어의 단어를 중심으로 3가지 영역인 '코로나 19와 프로야구', '코로나 19와 프로야구 무관중', '코로나 19와 프로스포츠'에 대해 웹 환경에서 데이터 수집과 정제작업을 실시한 후 일괄 처리하였으며, 이를 시각화하기 위해 Ucinet6프로그램을 활용하였다. 구체적으로 웹 환경의 수집은 네이버, 다음, 구글의 채널을 활용하였고, 추출된 단어들 중 전문가회의를 통해 30개의 단어로 요약 정리하여 최종 연구에 활용하였다. 30개의 추출된 단어를 매트릭스를 통해 시각화하였으며, 단어의 유사성과 공통성의 군집을 파악하기 위해 CONCOR분석을 실시하였다. 분석결과 코로나 19와 프로야구에 관련된 군집은 1개의 중심클러스터와 5개의 주변클러스터로 구성되었고 코로나 19여파에 따른 프로야구 개막과 관련된 내용을 주로 검색하고 있는 것으로 나타났다. 코로나 19와 프로야구 무관중에 관련된 군집은 1개의 중심 클러스터와 5개의 주변클러스터로 구성되었으며, 코로나 19에 따른 프로야구 경기와 관련된 프로야구 입장의 키워드를 주로 검색하고 있는 것으로 나타났다. 코로나 19와 프로스포츠에 관련된 군집은 1개의 중심클러스터와 5개의 주변클러스터로 구성되었으며, 코로나 19의 여파에 따른 프로스포츠 시작과 관련된 키워드를 주로 검색하고 있는 것으로 나타났다. 이를 종합해보면 포스트 코로나 시대의 프로야구는 많은 변화가 있을 것이라 예상된다. 특히 응원문화는 관중들이 원하는 정도의 만족감은 없겠지만 관중들이 누릴 수 있는 직접관람의 기회를 누리기 위해 야구장에서도 코로나 19를 극복하기 위한 하나의 일상으로의 행동강령이 잘 유지되어야 할 것이다. 관람문화 또한 라이브커머스, AR/VR, O4O(Online for Offline)등의 4차 산업혁명의 기술도입으로 현장감 있는 쌍방향 소통이 가능한 인터렉티브 소통의 디지털이 구현돼야 할 것이다. 포스트 코로나 시대는 프로스포츠에도 새로운 형태의 패러다임이 구축될 것이다. 랜선 응원, SNS를 활용한 응원, 실시간 동시시청, 라이브 채팅응원, 편파중계 등 다양한 형태의 응원문화가 새로운 창작 콘텐츠 형태로 진화할 것이며, 팬들의 욕구를 충족할 수 있는 새로운 형태의 패러다임이 구축돼야 하겠다.

차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구 (Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis)

  • 박혜진;최재석;조상구
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.121-142
    • /
    • 2023
  • 수입식품의 수입 건수와 수입 중량이 꾸준히 증가함에 따라 식품안전사고 방지를 위한 수입식품의 안전관리가 더욱 중요해지고 있다. 식품의약품안전처는 통관단계의 수입검사와 더불어 통관 전 단계인 해외제조업소에 대한 현지실사를 시행하고 있지만 시간과 비용이 많이 소요되고 한정된 자원 등의 제약으로 데이터 기반의 수입식품 안전관리 방안이 필요한 실정이다. 본 연구에서는 현지실사 전 부적합이 예상되는 업체를 사전에 선별하는 기계학습 예측 모형을 마련하여 현지실사의 효율성을 높이고자 하였다. 이를 위해 통합식품안전정보망에 수집된 총 303,272건의 해외제조가공업소 기본정보와 2019년도부터 2022년 4월까지의 현지실사 점검정보 데이터 1,689건을 수집하였다. 해외제조가공업소의 데이터 전처리 후 해외 제조업소_코드를 활용하여 현지실사 대상 데이터만 추출하였고, 총 1,689건의 데이터와 103개의 변수로 구성되었다. 103개의 변수를 테일유(Theil-U) 지표를 기준으로 '0'인 변수들을 제거하였고, 다중대응분석(Multiple Correspondence Analysis)을 적용해 축소 후 최종적으로 49개의 특성변수를 도출하였다. 서로 다른 8개의 모델을 생성하고, 모델 학습 과정에서는 5겹 교차검증으로 과적합을 방지하고, 하이퍼파라미터를 조정하여 비교 평가하였다. 현지실사 대상업체 선별의 연구목적은 부적합 업체를 부적합이라고 판정하는 확률인 검측률(recall)을 최대화하는 것이다. 머신러닝의 다양한 알고리즘을 적용한 결과 Recall_macro, AUROC, Average PR, F1-score, 균형정확도(Balanced Accuracy)가 가장 높은 랜덤포레스트(Random Forest)모델이 가장 우수한 모형으로 평가되었다. 마지막으로 모델에 의해서 평가된 개별 인스턴스의 부적합 업체 선정 근거를 제시하기 위해 SHAP(Shapley Additive exPlanations)을 적용하고 현지실사 업체 선정 시스템에의 적용 가능성을 제시하였다. 본 연구결과를 바탕으로 데이터에 기반한 과학적 위험관리 모델을 통해 수입식품 관리체계의 구축으로 인력·예산 등 한정된 자원의 효율적 운영방안 마련에 기여하길 기대한다.

R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템 (An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis)

  • 이충석;이석주;최병구
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.79-96
    • /
    • 2012
  • 기술의 발전과 융합이 빠르게 이루어지고 있는 오늘날 유망기술을 어떻게 파악하여, 다양한 후보군들 중에서 최적의 R&D 대상을 어떻게 선정할 것인가에 대한 문제는 주요한 경영의사결정문제 중 하나로 부상하고 있다. 본 연구에서는 이러한 R&D 기술 선정 의사결정을 지원할 수 있는 새로운 지능형 의사결정지원시스템을 제안한다. 본 연구의 의사결정지원시스템은 크게 3가지 모듈로 구성되는데, 우선 첫 번째 모듈인 '기술가치 평가' 모듈에서는 기업이 관심을 갖고 있는 분야의 특허들을 분석하여 유망기술 파악에 요구되는 다양한 차원의 기술가치 평가지수 값들을 산출하는 작업이 이루어진다. 이를 통해, 현재 시점에서의 각 기술의 가치가 다양한 차원에서 평가가 이루어지고 나면, 두 번째 모듈인 '미래기술가치 예측' 모듈에서 이들의 시간 흐름에 따른 변화를 학습한 인공지능 모형을 토대로 각 후보기술들이 미래 시점에 어떤 가치지수값을 갖게 될 것인지 예측값을 산출하게 된다. 마지막 세 번째 모듈인 '최적 R&D 대상기술 선정 지원' 모듈에서는 앞서 두 번째 모듈에서 산출된 각 차원별 예상 가치지수값들을 적절히 가중합하여 기술의 종합적인 미래가치 예측값을 산출하여 의사결정자에게 제공하는 기능을 수행한다. 이를 통해 의사결정자가 자사에 적합한 최적의 R&D 대상기술을 선정할 수 있도록 하였다. 본 연구에서는 제안된 시스템의 적용 가능성을 검증하기 위해, 10년치 특허데이터에 인공신경망 기법을 적용하여 실제 기술가치 예측모형을 구축해 보고, 그 효과를 살펴본다.