• Title/Summary/Keyword: in-memory file system

Search Result 240, Processing Time 0.025 seconds

Study on Memory Data Encryption of Windows Hibernation File (윈도우 최대 절전 모드 파일의 메모리 데이터 암호화 기법 연구)

  • Lee, Kyoungho;Lee, Wooho;Noh, Bongnam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1013-1022
    • /
    • 2017
  • Windows hibernation is a function that stores data of physical memory on a non-volatile media and then restores the memory data from the non-volatile media to the physical memory when the system is powered on. Since the hibernation file has memory data in a static state, when the attacker collects it, key information in the system's physical memory may be leaked. Because Windows does not support protection for hibernation files only, we need to protect the memory that is written to the hibernate file. In this paper, we propose a method to encrypt the physical memory data in the hibernation file to protect the memory data of the processes recorded in the hibernation file. Hibernating procedure is analyzed to encrypt the memory data at the hibernating and the encryption process for hibernation memory is implemented to operate transparently for each process. Experimental results show that the hibernation process memory encryption tool showed about 2.7 times overhead due to the crypt cost. This overhead is necessary to prevent the attacker from exposing the plaintext memory data of the process.

Design and Implementation of a File System that Considers the Space Efficiency of NVRAM (비휘발성 메모리의 공간적 효율성을 고려한 파일 시스템의 설계 및 구현)

  • Hyun Choul-Seung;Baek Seung-Jae;Choi Jong-Moo;Lee Dong-Hee;Noh Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.615-625
    • /
    • 2006
  • Nonvolatile memory technology is evolving continuously and commercial products such as FeRAM and PRAM are now challenging their markets. As NVRAM has properties of both memory and storage, it can store persistent data objects while allowing fast and random access. To utilize NVRAM for general purpose storing of frequently updated data across power disruptions, some essential features of the file system including naming, recovery, and space management are required while exploiting memory-like properties of NVRAM. Conventional file systems, including even recently developed NVRAM file systems, show very low space efficiency wasting more than 50% of the total space in some cases. To efficiently utilize the relatively expensive NVRAM, we design and implement a new extent-based space-thrifty file system, which we call NEBFS (NVRAM Extent-Based File System). We analyze and compare the space utilization of conventional file systems with NEBFS and validate the results with experimental results observed from running the file system implementations on a system with actual NVRAM installed as well as on systems emulating NVRAM. We show that NEBFS has high space efficiency compared to conventional file systems.

SAF: A Scheme of Swap Space Allocation in File Systems to Reduce Disk Seek Time (SAF: 디스크 탐색 시간 향상을 위한 파일 시스템 내 스왑 공간 할당 기법)

  • Ahn, Woo-Hyun;Kim, Bo-Gon;Kim, Byung-Gyu;Oh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1289-1300
    • /
    • 2011
  • In recent computer systems with high-performance, users execute programs needing large memory and programs intensively accessing files simultaneously. Such a large memory requirement makes virtual memory systems access swap spaces in disk, and intensive file accesses require file systems to access file system partitions in disk. Executing the two kinds of programs at once incurs large disk seeks between swap spaces and file system partitions frequently. To solve the problem, this paper proposes a new scheme called SAF to create several swap spaces in a file system partition, where pages to be paged out are stored. When a page is paged out, the scheme stores the page to one of the swap spaces close to a disk location where the most recently accessed file is located. The chosen swap space in the file system partition is closer to the disk location than the traditional swap space, so that our scheme can reduce the large disk seek time spent to move to the traditional swap space in paging out a page. The experiment of our scheme implemented in FreeBSD 6.2 shows that SAF reduces the execution time of several benchmarks over FreeBSD ranging from 14% to 42%.

Gen-Z memory pool system implementation and performance measurement

  • Kwon, Won-ok;Sok, Song-Woo;Park, Chan-ho;Oh, Myeong-Hoon;Hong, Seokbin
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.450-461
    • /
    • 2022
  • The Gen-Z protocol is a memory semantic protocol between the memory and CPU used in computer architectures with large memory pools. This study presents the implementation of the Gen-Z hardware system configured using Gen-Z specification 1.0 and reports its performance. A hardware prototype of a DDR4 Gen-Z memory pool with an optimized character, a block device driver, and a file system for the Gen-Z hardware was designed. The Gen-Z IP was targeted to the FPGA, and a 512 GB Gen-Z memory pool was configured on an ×86 server. In the experiments, the latency and throughput of the Gen-Z memory were measured and compared with those of the local memory, SATA SSD, and NVMe using character or block device interfaces. The Gen-Z hardware exhibited superior throughput and latency performance compared with SATA SSD and NVMe at block sizes under 4 kB. The MySQL and File IO benchmark of Gen-Z showed good write performance in all block sizes and threads. Besides, it showed low latency in RocksDB's fillseq dbbench using the ext4 direct access filesystem.

Processing Method of Mass Small File Using Hadoop Platform (하둡 플랫폼을 이용한 대량의 스몰파일 처리방법)

  • Kim, Chang-Bok;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • Hadoop is composed with MapReduce programming model for distributed processing and HDFS distributed file system. Hadoop is suitable framework for big data processing, but processing of mass small files have many problems. The processing of mass small file in hadoop have problems to created one mapper per one file, and it have problems to needed many memory for store of meta information of file. This paper have comparison evaluation processing method of mass small file with various method in hadoop platform. The processing of general compression format is inadequate because of processing by one mapper regardless of data size. The processing of sequence and hadoop archive file is removed memory problem of namenode by compress and combine of small file. Hadoop archive file is faster then sequence file about combine time of small file. The processing using CombineFileInputFormat class is needed not combine of small file, and it have similar speed big data processing method.

A New File System for Multimedia Data Stream (멀티미디어 데이터 스트림을 위한 파일 시스템의 설계 및 구현)

  • Lee, Minsuk;Song, Jin-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.2
    • /
    • pp.90-103
    • /
    • 2006
  • There are many file systems in various operating systems. Those are usually designed for server environments, where the common cases are usually 'multiple active users', 'great many small files' And they assume a big main memory to be used as buffer cache. So the existing file systems are not suitable for resource hungry embedded systems that process multimedia data streams. In this study, we designed and implemented a new file system which efficiently stores and retrieves multimedia data steams. The proposed file system has a very simple disk layout, which guarantees a quick disk initialization and file system recovery. And we introduced a new indexing-scheme, called the time-based indexing scheme, with the file system. With the indexing scheme, the file system maintains the relation between time and the location for all the multimedia streams. The scheme is useful in searching and playing the compressed multimedia streams by locating exact frame position with given time, resulting in reduction of CPU processing and power consumption. The proposed file system and its APIs utilizing the time-based indexing schemes were implemented firstly on a Linux environment, though it is operating system independent. In the performance evaluation on a real DVR system, which measured the execution time of multi-threaded reading and writing, we found the proposed file system is maximum 38.7% faster than EXT2 file system.

  • PDF

Flash Memory Shadow Paging Scheme Using Deferred Cleaning List for Portable Databases (휴대용 데이터베이스를 위한 지연된 소거 리스트를 이용하는 플래시 메모리 쉐도우 페이징 기법)

  • Byun Si-Woo
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.2
    • /
    • pp.115-126
    • /
    • 2006
  • Recently, flash memories are one of best media to support portable computer's storages in mobile computing environment. We propose a new transaction recovery scheme for a flash memory database environment which is based on a flash media file system. We improved traditional shadow paging schemes by reusing old data pages which are supposed to be invalidated in the course of writing a new data page in the flash file system environment. In order to reuse these data pages, we exploit deferred cleaning list structure in our flash memory shadow paging (FMSP) scheme. FMSP scheme removes the additional storage overhead for keeping shadow pages and minimizes the I/O performance degradation caused by data page distribution phenomena of traditional shadow paging schemes. We also propose a simulation model to show the performance of FMSP. Based on the results of the performance evaluation, we conclude that FMSP outperforms the traditional scheme.

  • PDF

An Empirical Evaluation Analysis of the Performance of In-memory Bigdata Processing Platform (메모리 기반 빅데이터 처리 프레임워크의 성능개선 연구)

  • Lee, Jae hwan;Choi, Jun;Koo, Dong hun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • Spark, an in-memory big-data processing framework is popular to use for real-time processing workload. Spark can store all intermediate data in the cluster memory so that Spark can minimize I/O access. However, when the resident memory of workload is larger that the physical memory amount of the cluster, the total performance can drop dramatically. In this paper, we analyse the factors of bottleneck on PageRank Application that needs many memory through experiment, and cluster the Spark with Tachyon File System for using memory to solve the factor of bottleneck and then we improve the performance about 18%.

A Secure Deletion Method for NAND Flash File System (NAND 플래시 파일 시스템을 위한 안전 삭제 기법)

  • Lee, Jae-Heung;Oh, Jin-Ha;Kim, Seok-Hyun;Yi, Sang-Ho;Heo, Jun-Young;Cho, Yoo-Kun;Hong, Ji-Man
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.251-255
    • /
    • 2008
  • In most file systems, if a file is deleted, only the metadata of the file is deleted or modified and the file's data is still stored on the physical media. Some users require that deleted files no longer be accessible. This requirement is more important in embedded systems that employ flash memory as a storage medium. In this paper, we propose a secure deletion method for NAND flash file system and apply the method to YAFFS. Our method uses encryption to delete files and forces all keys of a specific file to be stored in the same block. Therefore, only one erase operation is required to securely delete a file. Our simulation results show that the amortized number of block erases is smaller than the simple encryption method. Even though we apply our method only to the YAFFS, our method can be easily applied to other NAND flash file systems.

MBS-LVM: A High-Performance Logical Volume Manager for Memory Bus-Connected Storages over NUMA Servers

  • Lee, Yongseob;Park, Sungyong
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.151-158
    • /
    • 2019
  • With the recent advances of memory technologies, high-performance non-volatile memories such as non-volatile dual in-line memory module (NVDIMM) have begun to be used as an addition or an alternative to server-side storages. When these memory bus-connected storages (MBSs) are installed over non-uniform memory access (NUMA) servers, the distance between NUMA nodes and MBSs is one of the crucial factors that influence file processing performance, because the access latency of a NUMA system varies depending on its distance from the NUMA nodes. This paper presents the design and implementation of a high-performance logical volume manager for MBSs, called MBS-LVM, when multiple MBSs are scattered over a NUMA server. The MBS-LVM consolidates the address space of each MBS into a single global address space and dynamically utilizes storage spaces such that each thread can access an MBS with the lowest latency possible. We implemented the MBS-LVM in the Linux kernel and evaluated its performance by porting it over the tmpfs, a memory-based file system widely used in Linux. The results of the benchmarking show that the write performance of the tmpfs using MBS-LVM has been improved by up to twenty times against the original tmpfs over a NUMA server with four nodes.