• Title/Summary/Keyword: in-memory computing

Search Result 766, Processing Time 0.028 seconds

Performance Management Tool for SPAX (SPAX를 위한 성능 관리 툴)

  • Kim, Do-Hyeong;Park, Chang-Sun;Jeon, Jin-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.5
    • /
    • pp.639-650
    • /
    • 1999
  • Generally, a performance management consists of the iterative process of performance monitoring, performance analysis, and performance tuning. In this paper, we describe the design and implementation of performance monitor and performance tuner which can be used on the top of SPAX, also known as TICOM IV. SPAX has a hierarchical structure. All nodes, each of which has a local memory, are connected to the interconnection network and constructed to form clusters. Therefore, it is necessary to develop a new performance monitor reflecting the underlying hierarchical structure of SPAX, to implement performance monitoring more effectively. Implemented performance monitor can monitor the state of nodes, clusters, and total system of SPAX at realtime. And, implemented performance tuner can change the value of variables related to the performance of SPAX. System manager can perform an effective performance management by using the proposed performance management tools.

A Low Cost IBM PC/AT Based Image Processing System for Satellite Image Analysis: A New Analytical Tool for the Resource Managers

  • Yang, Young-Kyu;Cho, Seong-Ik;Lee, Hyun-Woo;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 1988
  • Low-cost microcomputer systems can be assembled which possess computing power, color display, memory, and storage capacity approximately equal to graphic workstactions. A low-cost, flexible, and user-friendly IBM/PC/XT/AT based image processing system has been developed and named as KMIPS(KAIST (Korea Advanced Institute of Science & Technology) Map and Image Processing Station). It can be easily utilized by the resource managers who are not computer specialists. This system can: * directly access Landsat MSS and TM, SPOT, NOAA AVHRR, MOS-1 satellite imagery and other imagery from different sources via magnetic tape drive connected with IBM/PC; * extract image up to 1024 line by 1024 column and display it up to 480 line by 672 column with 512 colors simultaneously available; * digitize photographs using a frame grabber subsystem(512 by 512 picture elements); * perform a variety of image analyses, GIS and terrain analyses, and display functions; and * generate map and hard copies to the various scales. All raster data input to the microcomputer system is geographically referenced to the topographic map series in any rater cell size selected by the user. This map oriented, georeferenced approach of this system enables user to create a very accurately registered(.+-.1 picture element), multivariable, multitemporal data sets which can be subsequently subsequently subjected to various analyses and display functions.

Analyses of Security into End-to-End Point Healthcare System based on Internet of Things (사물인터넷 기반의 헬스케어 시스템의 종단간 보안성 분석)

  • Kim, Jung Tae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.871-880
    • /
    • 2017
  • Recently, service based on internet is inter-connected and integrated with a variety of connection. This kind of internet of things consist of heterogenous devices such as sensor node, devices and end-to end equipment which used in conventional protocols and services. The representative system is healthcare system. From healthcare appliance used by IoT, patient and doctor can utilize healthcare information with safety and high speed management. It is very convenient management to operate mobility. But it induced security and vulnerability issues because it has small memory capacity, low power supply and low computing power. This made impossible to implement security algorithm with embedded engine based on hardware. Nowdays, we can't realize conventional standard algorithm due to these kinds of reasons. From the critical issues, it occurred security and vulnerability issues. Therefore, we analysed and compared with conventional method and proposed techniques. Finally, we evaluated security issues and requirement for end-to-end point healthcare system based on internet of things.

MAGICal Synthesis: Memory-Efficient Approach for Generative Semiconductor Package Image Construction (MAGICal Synthesis: 반도체 패키지 이미지 생성을 위한 메모리 효율적 접근법)

  • Yunbin Chang;Wonyong Choi;Keejun Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.69-78
    • /
    • 2023
  • With the rapid growth of artificial intelligence, the demand for semiconductors is enormously increasing everywhere. To ensure the manufacturing quality and quantity simultaneously, the importance of automatic defect detection during the packaging process has been re-visited by adapting various deep learning-based methodologies into automatic packaging defect inspection. Deep learning (DL) models require a large amount of data for training, but due to the nature of the semiconductor industry where security is important, sharing and labeling of relevant data is challenging, making it difficult for model training. In this study, we propose a new framework for securing sufficient data for DL models with fewer computing resources through a divide-and-conquer approach. The proposed method divides high-resolution images into pre-defined sub-regions and assigns conditional labels to each region, then trains individual sub-regions and boundaries with boundary loss inducing the globally coherent and seamless images. Afterwards, full-size image is reconstructed by combining divided sub-regions. The experimental results show that the images obtained through this research have high efficiency, consistency, quality, and generality.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

Video Retrieval System supporting Adaptive Streaming Service (적응형 스트리밍 서비스를 지원하는 비디오 검색 시스템)

  • 이윤채;전형수;장옥배
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Recently, many researches into distributed processing on Internet, and multimedia data processing have been performed. Rapid and convenient multimedia services supplied with high quality and high speed are to be needed. In this paper, we design and implement clip-based video retrieval system on the Web enviroment in real-time. Our system consists of the content-based indexing system supporting convenient services for video content providers, and the Web-based retrieval system in order to make it easy and various information retrieval for users in the Web. Three important methods are used in the content-based indexing system, key frame extracting method by dividing video data, clip file creation method by clustering related information, and video database construction method by using clip unit. In Web-based retrieval system, retrieval method ny using a key word, two dimension browsing method of key frame, and real-time display method of the clip are used. In this paper, we design and implement the system that supports real-time display method of the clip are used. In this paper, we design and implement the system that supports real-time retrieval for video clips on Web environment and provides the multimedia service in stability. The proposed methods show a usefulness of video content providing, and provide an easy method for serching intented video content.

Studies of the Efficiency of Wearable Input Interface (웨어러블 입력장치의 인터페이스 효율성에 관한 연구)

  • Lee, Seun-Young;Hong, Ji-Young;Chae, Haeng-Suk;Han, Kwang-Hee
    • Science of Emotion and Sensibility
    • /
    • v.10 no.4
    • /
    • pp.583-601
    • /
    • 2007
  • The desktop interface is not suitable for the environment in which mobile devices are used commonly with moving, because much attention should be paid for it. And the miniaturizing of mobile devices increases the workload for using them, makes the operation speeds lower and makes more errors. So the study of appropriate level of the input interface for this changing environment is needed. In the aspect of mobile devices. input style and the complexity of the menu hierarchy, this study will look for the way to decrease the workload when doing some primary tasks and using mobile devices simultaneously with moving. The input style was classified into gesture input style, button input style, and pointing input style. The accuracy and speed were measured when doing dual tasks, including a menu searching task and a figure memory task, through one input style of three. By Changing the level of menu hierarchy in the menu searching task, the accuracy of task execution was examined. These Experiments were done in standing state and moving state. In both state the pointing input style was the highest in the accuracy of task execution but the slowest in the speed. In contrast, the gesture input style was not high in the accuracy but the fastest in the speed. This fact shows that the gesture input style is suitable for the condition needed for speedy processing rather than accurate execution when moving.

  • PDF

Analysis of Factors for Korean Women's Cancer Screening through Hadoop-Based Public Medical Information Big Data Analysis (Hadoop기반의 공개의료정보 빅 데이터 분석을 통한 한국여성암 검진 요인분석 서비스)

  • Park, Min-hee;Cho, Young-bok;Kim, So Young;Park, Jong-bae;Park, Jong-hyock
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1277-1286
    • /
    • 2018
  • In this paper, we provide flexible scalability of computing resources in cloud environment and Apache Hadoop based cloud environment for analysis of public medical information big data. In fact, it includes the ability to quickly and flexibly extend storage, memory, and other resources in a situation where log data accumulates or grows over time. In addition, when real-time analysis of accumulated unstructured log data is required, the system adopts Hadoop-based analysis module to overcome the processing limit of existing analysis tools. Therefore, it provides a function to perform parallel distributed processing of a large amount of log data quickly and reliably. Perform frequency analysis and chi-square test for big data analysis. In addition, multivariate logistic regression analysis of significance level 0.05 and multivariate logistic regression analysis of meaningful variables (p<0.05) were performed. Multivariate logistic regression analysis was performed for each model 3.

Spark based Scalable RDFS Ontology Reasoning over Big Triples with Confidence Values (신뢰값 기반 대용량 트리플 처리를 위한 스파크 환경에서의 RDFS 온톨로지 추론)

  • Park, Hyun-Kyu;Lee, Wan-Gon;Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.87-95
    • /
    • 2016
  • Recently, due to the development of the Internet and electronic devices, there has been an enormous increase in the amount of available knowledge and information. As this growth has proceeded, studies on large-scale ontological reasoning have been actively carried out. In general, a machine learning program or knowledge engineer measures and provides a degree of confidence for each triple in a large ontology. Yet, the collected ontology data contains specific uncertainty and reasoning such data can cause vagueness in reasoning results. In order to solve the uncertainty issue, we propose an RDFS reasoning approach that utilizes confidence values indicating degrees of uncertainty in the collected data. Unlike conventional reasoning approaches that have not taken into account data uncertainty, by using the in-memory based cluster computing framework Spark, our approach computes confidence values in the data inferred through RDFS-based reasoning by applying methods for uncertainty estimating. As a result, the computed confidence values represent the uncertainty in the inferred data. To evaluate our approach, ontology reasoning was carried out over the LUBM standard benchmark data set with addition arbitrary confidence values to ontology triples. Experimental results indicated that the proposed system is capable of running over the largest data set LUBM3000 in 1179 seconds inferring 350K triples.

Performance Analysis of TCAM-based Jumping Window Algorithm for Snort 2.9.0 (Snort 2.9.0 환경을 위한 TCAM 기반 점핑 윈도우 알고리즘의 성능 분석)

  • Lee, Sung-Yun;Ryu, Ki-Yeol
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 2012
  • Wireless network support and extended mobile network environment with exponential growth of smart phone users allow us to utilize the network anytime or anywhere. Malicious attacks such as distributed DOS, internet worm, e-mail virus and so on through high-speed networks increase and the number of patterns is dramatically increasing accordingly by increasing network traffic due to this internet technology development. To detect the patterns in intrusion detection systems, an existing research proposed an efficient algorithm called the jumping window algorithm and analyzed approximately 2,000 patterns in Snort 2.1.0, the most famous intrusion detection system. using the algorithm. However, it is inappropriate from the number of TCAM lookups and TCAM memory efficiency to use the result proposed in the research in current environment (Snort 2.9.0) that has longer patterns and a lot of patterns because the jumping window algorithm is affected by the number of patterns and pattern length. In this paper, we simulate the number of TCAM lookups and the required TCAM size in the jumping window with approximately 8,100 patterns from Snort-2.9.0 rules, and then analyse the simulation result. While Snort 2.1.0 requires 16-byte window and 9Mb TCAM size to show the most effective performance as proposed in the previous research, in this paper we suggest 16-byte window and 4 18Mb-TCAMs which are cascaded in Snort 2.9.0 environment.