Many researchers expect the compressive sensing and sparse recovery problem can overcome the limitation of conventional digital techniques. However, these new approaches require to solve the l1 norm optimization problems when it comes to signal reconstruction. In the signal reconstruction process, the transform computation by multiplication of a random matrix and a vector consumes considerable computing power. To address this issue, parallel processing is applied to the optimization problems. In particular, due to huge size of original signal, it is hard to store the random matrix directly in memory, which makes one need to design a procedural approach in handling the random matrix. This paper presents a new parallel algorithm to calculate random partial Haar wavelet transform based on Single Instruction Multiple Threads (SIMT) platform.
Kim, Byung-Joo;Sim, Joo-Yong;Hwang, Chang-Ha;Kim, Il-Kon
The KIPS Transactions:PartB
/
v.10B
no.3
/
pp.243-248
/
2003
An incremental kernel principal component analysis (IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis (KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenspace should be recomputed. IKPCA overcomes these problems by incrementally computing eigenspace model and empirical kernel map The IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the feature extraction and classification problem on nonlinear data set.
MIDAS-II is the storage system for BADA DBMS developed at ETRI. This paper describes the extension of MIDAS-II for incorporating the tertiary storage device such as an optical disk jukebox or a tape library, enabling MIDAS-II to function as a storage system of the data server that stores a massive amount of multimedia data. The MIDAS-II disk volume structure is extended to efficiently function as a volume for the tertiary storage device with multiple platters, which canstore huge amount of data of the order of tera bytes. The storage structure of the LOB is changed to efficiently manage the LOB data in the tertiary storage device. The data structures of the shared memory, the process structure, and the utilities in MIDAS-II are also extended to efficiently incorporating the tertiary storage device. The functionalities of each MIDAS-II API function are expanded to handle the tertiary storage device, while the prototypes of those functions are intact in order not to affect the existing application programs. The performance evaluation shows that the extended MIDAS-II works effectively with the tertiary storage device. All these extensions and the performance evaluation are conducted in the SunOS 5.4 environment.
Recent studies on change detection for RDF data are focused on not only the structural difference but also the semantic-aware difference by computing the closure of RDF models. However, since these techniques which take into account the semantics of RDF model require both RDF models to be memory resident, or they use a forward-chaining strategy which computes the entire closure in advance, it is not efficient to apply them directly to detect changes in large RDF data. In this paper, we propose a scalable change detection technique for RDF data, which uses a backward-chaining inference based on relational database. Proposed method uses a new approach for RDF reasoning that computes only the relevant part of the closure for change detection in a relational database. We show that our method clearly outperforms the previous works through experiment using the real RDF from the bioinformatics domain.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.1765-1794
/
2019
Genetic Programming (GP) is an intelligence technique whereby computer programs are encoded as a set of genes which are evolved utilizing a Genetic Algorithm (GA). In other words, the GP employs novel optimization techniques to modify computer programs; imitating the way humans develop programs by progressively re-writing them for solving problems automatically. Trial programs are frequently altered in the search for obtaining superior solutions due to the base is GA. These are evolutionary search techniques inspired by biological evolution such as mutation, reproduction, natural selection, recombination, and survival of the fittest. The power of GAs is being represented by an advancing range of applications; vector processing, quantum computing, VLSI circuit layout, and so on. But one of the most significant uses of GAs is the automatic generation of programs. Technically, the GP solves problems automatically without having to tell the computer specifically how to process it. To meet this requirement, the GP utilizes GAs to a "population" of trial programs, traditionally encoded in memory as tree-structures. Trial programs are estimated using a "fitness function" and the suited solutions picked for re-evaluation and modification such that this sequence is replicated until a "correct" program is generated. GP has represented its power by modifying a simple program for categorizing news stories, executing optical character recognition, medical signal filters, and for target identification, etc. This paper reviews existing literature regarding the GPs and their applications in different scientific fields and aims to provide an easy understanding of various types of GPs for beginners.
Journal of the Korea Society of Computer and Information
/
v.25
no.12
/
pp.203-210
/
2020
Memory-based collaborative filtering is one of the representative types of the recommender system, but it suffers from the inherent problem of data sparsity. Although many works have been devoted to solving this problem, there is still a request for more systematic approaches to the problem. This study exploits distribution of user ratings given to items for computing similarity. All user ratings are utilized in the proposed method, compared to previous ones which use ratings for only common items between users. Moreover, for similarity computation, it takes a global view of ratings for items by reflecting other users' ratings for that item. Performance is evaluated through experiments and compared to that of other relevant methods. The results reveal that the proposed demonstrates superior performance in prediction and rank accuracies. This improvement in prediction accuracy is as high as 2.6 times more than that achieved by the state-of-the-art method over the traditional similarity measures.
Kim, Hee-Seok;Kim, Sung-Kyoung;Kim, Tae-Hyun;Park, Young-Ho;Lim, Jong-In;Han, Dong-Guk
Journal of the Korea Institute of Information Security & Cryptology
/
v.17
no.2
/
pp.115-123
/
2007
In cryptographic devices like a smart-card whose computing ability and memory are limited, cryptographic algorithms should be performed efficiently. Scalar multiplication is very important operation in Elliptic Curve Cryptosystems, and so must be constructed in safety against side channel attack(SCA). But several countermeasures proposed against SCA are exposed weaknesses by new un-dreamed analysis. 'Double-and-add always scalar multiplication' algorithm adding dummy operation being known to secure against SPA is exposed weakness by Doubling Attack. But Doubling Attack cannot apply to sABS receding proposed by Hedabou, that is another countermeasure against SPA. Our paper proposes new strengthened Doubling Attacks that can break sABS receding SPA-countermeasure and a detailed method of our attacks through experimental result.
The Journal of the Convergence on Culture Technology
/
v.9
no.4
/
pp.699-706
/
2023
Recently, the 4 generation industry revolution is developed with advanced and combined with a variety of new technologies. Conventional healthcare system is applied with IoT application. It provides many advantages with mobility and swift data transfers to patient and doctor. In despite of these kinds of advantages, it occurred security issues between basic devices and protocols in their applications. Especially, internet of things have restricted and limited resources such as small memory capacity, low capability of computing power, etc. Therefore, we can not utilize conventional mechanism. In this paper, we analyzed attacks and vulnerability in terms of security issues. To analyze security structure, features, demands and requirements, we solve the methods to be reduced security issues.
Approximate Frequent pattern mining is to find approximate patterns, not exact frequent patterns with tolerable variations for more efficiency. As the size of database increases, much faster mining techniques are needed to deal with huge databases. Moreover, it is more difficult to discover exact results of mining patterns due to inherent noise or data diversity. In these cases, by mining approximate frequent patterns, more efficient mining can be performed in terms of runtime, memory usage and scalability. In this paper, we study the characteristics of an approximate mining algorithm based on probabilistic technique and run performance evaluation of the efficient approximate frequent pattern mining algorithm. Finally, we analyze the test results for more improvement.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.4
/
pp.349-354
/
2014
PIN(Personal Identification Number)-based identification method has been used to identify the user of smart cards. However, this type of identification method has several problems. Firstly, PIN can be forgotten by owners of the card. Secondly, PIN can be used by others illegally. Furthermore, the possibility of hacking PIN can be high because this PIN type matching process is performed on terminal. Thus, in this paper we suggest a new identification method which is performed on smart card using face feature information. The proposed identification method uses low-sized face feature vectors and simple matching algorithm in order to get around the limits in computing capability and memory size of smart card.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.