Jo, Hwiyeol;Kim, Jin-Hwa;Kim, Kyung-Min;Chang, Jeong-Ho;Eom, Jae-Hong;Zhang, Byoung-Tak
KIISE Transactions on Computing Practices
/
v.23
no.5
/
pp.322-327
/
2017
The classification problem in the field of Natural Language Processing has been studied for a long time. Continuing forward with our previous research, which classifies large-scale text using Convolutional Neural Networks (CNN), we implemented Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU). The experiment's result revealed that the performance of classification algorithms was Multinomial Naïve Bayesian Classifier < Support Vector Machine (SVM) < LSTM < CNN < GRU, in order. The result can be interpreted as follows: First, the result of CNN was better than LSTM. Therefore, the text classification problem might be related more to feature extraction problem than to natural language understanding problems. Second, judging from the results the GRU showed better performance in feature extraction than LSTM. Finally, the result that the GRU was better than CNN implies that text classification algorithms should consider feature extraction and sequential information. We presented the results of fine-tuning in deep neural networks to provide some intuition regard natural language processing to future researchers.
Multidimensional scaling (MDS) is a widely used method for dimensionality reduction, of which purpose is to represent high-dimensional data in a low-dimensional space while preserving distances among objects as much as possible. MDS has mainly been applied to data visualization and feature selection. Among various MDS methods, the classical MDS is not readily applicable to data which has large numbers of objects, on normal desktop computers due to its computational complexity. More precisely, it needs to solve eigenpair problems on dissimilarity matrices based on Euclidean distance. Thus, running time and required memory of the classical MDS highly increase as n (the number of objects) grows up, restricting its use in large-scale domains. In this paper, we propose an efficient approximation algorithm for the classical MDS based on divide-and-conquer and CUDA. Through a set of experiments, we show that our approach is highly efficient and effective for analysis and visualization of data consisting of several thousands of objects.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.10
/
pp.190-196
/
2014
This paper proposes a mobile-optimized pedestrian detection method using Cascade of HOG(Histograms of Oriented Gradients) for ADAS(Advanced Driver Assistance System) on smartphones. In order to use the limited resource of mobile platforms efficiently, the method is implemented by the OpenCL(Open Computing Language) library, and its processing time is reduced in the following two aspects. Firstly, the method sets a program build option specifically and adjusts work group sizes as variety of kernels in the host code. Secondly, it utilizes local memory and a LUT(Look-Up Table) in the kernel code to accelerate the program. For performance evaluation, the developed algorithm is compared with the mobile CPU-based OpenCV(Open Computer Vision) for Android function. The experimental results show that the processing speed is 25% faster than the OpenCV hogcascade.
Data dissemination using either flooding or legacy ad-hoc routing protocol is not realistic approach in the wireless sensor networks, which are composed of sensor nodes with very weak computing power, small memory and limited battery. In this paper, we propose the ELF(Energy-efficient Localized Flooding) protocol. The ELF is energy-efficient data dissemination protocol for wireless sensor networks. In the ELF protocol, there are two data delivery phases between fixed source and mobile sink node. The first phase, before the tracking zone, sensing data are forwarded by unicasting. After that, within the tracking zone, sensing data are delivered by localized flooding. Namely, the ELF Properly combines advantages from both unicasting and flooding. According to evaluation results by simulation, the proposed ELF protocol maintains very high data delivery ratio with using a little energy. Also, the property of average delay is better than others. From our research results, the ELF is very effective data dissemination protocol for wireless sensor networks.
With increase of concern about the Ubiquitous application, the necessity of the computer system which is miniaturized is becoming larger. The ARM processor is showing a high share from embedded system market. In this paper, ideal method for RTD-1000 controller construction and development is described using ARM microcontroller. Existing RTD-1000 measures distance of disconnection or defect of sensing casket by measuring receiving reflected wave which was sent via copper wire inside the leaking sensing rod. Using this RTD-1000, leakage and breakage of water and oil pipe can be sensed and it reports damage results to the networks. But, existing RTD-1000 wastes hardware resources much and costs a great deal to installation. Also, it needs a cooling device because the heating problem, and has some problem of the secondary memory unit such as the hard disk. So, long tenn maintenance has some problems in the outside install place. In this paper, for the resolving the problem of RTD-1000, RTD-1000A embedded system based on ARM is proposed and simulated.
Binary translation is a kind of the emulation method which converts a binary code compiled on the particular instruction set architecture to the new binary code that can be run on another one. It has been mostly used for migrating legacy systems to new architecture. In recent, binary translation is used for instrumenting programs without modifying source code, because it enables inserting additional codes dynamically, For general application, there already exists some instrumentation software using binary translation, such as dynamic binary analyzers and virtual machine monitors. On the other hand, in order to be benefited from binary translation in kernel-level, a few issues, which include system performance, memory management, privileged instructions, and synchronization, should be treated. These matters are derived from the structure of the kernel, and the difference between the kernel and user-level application. In this paper, we present a scheme to apply binary translation and dynamic instrumentation on kernel. We implement it on Linux kernel and demonstrate that kernel-level binary translation adds an insignificant overhead to performance of the system.
Recently, a variety of organizations including enterprises tend to try to use reporting tools as a data analysis tool for decision making support because reporting tools are capable of formatting data flexibly. Traditional reporting tools have thin-client structure in which all of dynamic documents are generated in the server side. This structure enables reporting tools to avoid repetitive process to generate dynamic documents, when many clients intend to access the same dynamic document. However, generating dynamic documents for data analysis doesn't consider a number of potential readers and increases requests to the server by making clients input various parameters at short intervals. In the structure of the traditional reporting tools, the increase of these requests leads to the increase of processing load in the server side. Thus, we present the reporting tool that can generate dynamic documents at the client side. This reporting tool has a processing mechanism to deal with a number of data despite the limited memory capacity of the client side.
The electronic stores have realized that they need to understand their customers and to quickly response their wants and needs. To be successful in increasingly competitive Internet marketplace, recommender systems are adapting data mining techniques. One of most successful recommender technologies is collaborative filtering (CF) algorithm which recommends products to a target customer based on the information of other customers and employ statistical techniques to find a set of customers known as neighbors. However, the application of the systems, however, is not very suitable for seasonal products which are sensitive to time or season such as refrigerator or seasonal clothes. In this paper, we propose a new adjusted item-based recommendation generation algorithms called the exponentially weighted collaborative filtering recommendation (EWCFR) one that computes item-item similarities regarding seasonal products. Finally, we suggest the recommendation system with relatively high quality computing time on main memory database (MMDB) in XML since the collaborative filtering systems are needed that can quickly produce high quality recommendations with very large-scale problems.
Journal of the Korea Society of Computer and Information
/
v.15
no.8
/
pp.107-115
/
2010
RFID (Radio Frequency IDentification) technology, automatic identification and data capture technologies in ubiquitous computing is an essential skill. Low-cost Radio Frequency Identification tags using memory and no physical contact due to the ease of use and maintenance of excellence are going to use expanded. However, it is possible to the illegal acquisition of the information between RFID tags and readers because RFID uses the RF signal, and the obtained information can be used for the purpose of location tracking and invasion of privacy. In this paper, we proposed the security scheme to protect against the illegal user location tracking and invasion of privacy. The security scheme proposed in this paper, using Gray Code and reduced the capacity of the calculation of the actual tags, However, it is impossible for the malicious attacker to track information because tag information transmitted from the reader is not fixed. Therefore, even if the tags information is obtained by a malicious way, our scheme provides more simple and safe user privacy than any other protection methods to protect user privacy, because not actual information but encrypted information is becoming exposed.
The Journal of Korean Association of Computer Education
/
v.18
no.2
/
pp.83-90
/
2015
In an virtualization environment, several virtual machines use physical resources together. If a specific virtual machine uses to much of the computing resources, other machines may not be working properly. There are various method to solve this problem. Most representative study is to migrate a specified virtual machines to a different server, a target server. In this study, server load can be transferred to a target server by the remigrate of the load imposed on virtual machine. It is still problematic that virtual machine has to remigrate to a different server. This thesis has proposed the algorithm determining the remigration targets by applying dynamic thresholds to solve those problems. The migration algorithm applies dynamic thresholds according to the following criteria. Firstly, the usage of CPU, network and memory; secondly, decide the set of artificial machine and the target server based on the resources surpassed thresholds; thirdly, determine artificial machines based on the resource usage in the target server.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.