• Title/Summary/Keyword: in-memory computing

Search Result 766, Processing Time 0.031 seconds

Finding All-Pairs Suffix-Prefix Matching Using Suffix Array (접미사 배열을 이용한 Suffix-Prefix가 일치하는 모든 쌍 찾기)

  • Han, Seon-Mi;Woo, Jin-Woon
    • The KIPS Transactions:PartA
    • /
    • v.17A no.5
    • /
    • pp.221-228
    • /
    • 2010
  • Since string operations were applied to computational biology, security and search for Internet, various data structures and algorithms for computing efficient string operations have been studied. The all-pairs suffix-prefix matching is to find the longest suffix and prefix among given strings. The matching algorithm is importantly used for fast approximation algorithm to find the shortest superstring, as well as for bio-informatics and data compressions. In this paper, we propose an algorithm to find all-pairs suffix-prefix matching using the suffix array, which takes O($k{\cdot}m$)�� time complexity. The suffix array algorithm is proven to be better than the suffix tree algorithm by showing it takes less time and memory through experiments.

Comparison of Genetic Algorithms and Simulated Annealing for Multiprocessor Task Allocation (멀티프로세서 태스크 할당을 위한 GA과 SA의 비교)

  • Park, Gyeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2311-2319
    • /
    • 1999
  • We present two heuristic algorithms for the task allocation problem (NP-complete problem) in parallel computing. The problem is to find an optimal mapping of multiple communicating tasks of a parallel program onto the multiple processing nodes of a distributed-memory multicomputer. The purpose of mapping these tasks into the nodes of the target architecture is the minimization of parallel execution time without sacrificing solution quality. Many heuristic approaches have been employed to obtain satisfactory mapping. Our heuristics are based on genetic algorithms and simulated annealing. We formulate an objective function as a total computational cost for a mapping configuration, and evaluate the performance of our heuristic algorithms. We compare the quality of solutions and times derived by the random, greedy, genetic, and annealing algorithms. Our experimental findings from a simulation study of the allocation algorithms are presented.

  • PDF

System Infrastructure of Efficient Web Cluster System to Decrease the Response Time using the Load Distribution Algorithm (부하분산 알고리즘을 적용하여 반응시간을 감소시키는 웹 클러스터 시스템 구축)

  • Kim Seok-chan;Rhee Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.507-513
    • /
    • 2004
  • In this paper, we consider the methodology of efficient resource usage, specially web clustering system. We develope an algorithm that distributes the load on the web cluster system to use the system resources, such as system memory equally. The response time is chosen as a performance measure on the various clustering models. And based on the concurrent user to the web cluster system, the response time is also examined as the number of users increases. Simulation experience with this algorithm shows that the response time seems to have a good results compare to those with the other algorithm. And, also the effectiveness of clustered system becomes better as long as the number of concurrent user increases. The usage of developed algorithm is more useful when the system consists of many different sub-systems, a heterogeneous clustering system.

A Multilevel Key Distribution using Pseudo - random Permutations (의사 랜덤치환을 이용한 다중레벨 키분배)

  • Kim, Ju-Seog;Shin, Weon;Lee, Kyung-Hyune
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2493-2500
    • /
    • 1997
  • We propose a new key management scheme for multiuser group which is classified as hierarchical structure (sometimes it is called a multilevel security hierarchy) in the symmetric key cryptosystem. The proposed scheme is based on the trapdoor one-way permutations which are generated by the pseudo-random permutation algorithm, and it is avaliable for multilevel hierarchical structure composed of a totally ordered set and a partially ordered set, since it has advantage for time and storage from an implemental point of view. Moreover, we obtain a performance analysis by comparing with the other scheme, and show that the proposed scheme is very efficient for computing time of key generation and memory size of key storage.

  • PDF

A Dynamic ID Allocation Protocol for High-Performance RFID Tag (고기능 RFID 태그를 위한 동적 ID 할당 프로토콜)

  • Park Jin-Sung;Choi Myung-Ryul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.49-58
    • /
    • 2005
  • In this paper, we have proposed a secure dynamic ID allocation protocol using mutual authentication on the RFID tag. Currently, there are many security protocols focused on the low-price RFID tag. The conventional low-price tags have limitation of computing power and rewritability of memory. The proposed secure dynamic ID allocation protocol targets to the high-performance RFID tags which have more powerful performance than conventional low-price tag by allocating dynamic ID to RFID using mutual authentication based on symmetric encryption algorithm. This protocol can be used as a partial solution for ID tracing and forgery.

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

Behavioural Analysis of Password Authentication and Countermeasure to Phishing Attacks - from User Experience and HCI Perspectives (사용자의 패스워드 인증 행위 분석 및 피싱 공격시 대응방안 - 사용자 경험 및 HCI의 관점에서)

  • Ryu, Hong Ryeol;Hong, Moses;Kwon, Taekyoung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.79-90
    • /
    • 2014
  • User authentication based on ID and PW has been widely used. As the Internet has become a growing part of people' lives, input times of ID/PW have been increased for a variety of services. People have already learned enough to perform the authentication procedure and have entered ID/PW while ones are unconscious. This is referred to as the adaptive unconscious, a set of mental processes incoming information and producing judgements and behaviors without our conscious awareness and within a second. Most people have joined up for various websites with a small number of IDs/PWs, because they relied on their memory for managing IDs/PWs. Human memory decays with the passing of time and knowledges in human memory tend to interfere with each other. For that reason, there is the potential for people to enter an invalid ID/PW. Therefore, these characteristics above mentioned regarding of user authentication with ID/PW can lead to human vulnerabilities: people use a few PWs for various websites, manage IDs/PWs depending on their memory, and enter ID/PW unconsciously. Based on the vulnerability of human factors, a variety of information leakage attacks such as phishing and pharming attacks have been increasing exponentially. In the past, information leakage attacks exploited vulnerabilities of hardware, operating system, software and so on. However, most of current attacks tend to exploit the vulnerabilities of the human factors. These attacks based on the vulnerability of the human factor are called social-engineering attacks. Recently, malicious social-engineering technique such as phishing and pharming attacks is one of the biggest security problems. Phishing is an attack of attempting to obtain valuable information such as ID/PW and pharming is an attack intended to steal personal data by redirecting a website's traffic to a fraudulent copy of a legitimate website. Screens of fraudulent copies used for both phishing and pharming attacks are almost identical to those of legitimate websites, and even the pharming can include the deceptive URL address. Therefore, without the supports of prevention and detection techniques such as vaccines and reputation system, it is difficult for users to determine intuitively whether the site is the phishing and pharming sites or legitimate site. The previous researches in terms of phishing and pharming attacks have mainly studied on technical solutions. In this paper, we focus on human behaviour when users are confronted by phishing and pharming attacks without knowing them. We conducted an attack experiment in order to find out how many IDs/PWs are leaked from pharming and phishing attack. We firstly configured the experimental settings in the same condition of phishing and pharming attacks and build a phishing site for the experiment. We then recruited 64 voluntary participants and asked them to log in our experimental site. For each participant, we conducted a questionnaire survey with regard to the experiment. Through the attack experiment and survey, we observed whether their password are leaked out when logging in the experimental phishing site, and how many different passwords are leaked among the total number of passwords of each participant. Consequently, we found out that most participants unconsciously logged in the site and the ID/PW management dependent on human memory caused the leakage of multiple passwords. The user should actively utilize repudiation systems and the service provider with online site should support prevention techniques that the user can intuitively determined whether the site is phishing.

Implementation of User-friendly Intelligent Space for Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 사용자 친화적 지능형 공간 구현)

  • Choi, Jong-Moo;Baek, Chang-Woo;Koo, Ja-Kyoung;Choi, Yong-Suk;Cho, Seong-Je
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.443-452
    • /
    • 2004
  • The paper presents an intelligent space management system for ubiquitous computing. The system is basically a home/office automation system that could control light, electronic key, and home appliances such as TV and audio. On top of these basic capabilities, there are four elegant features in the system. First, we can access the system using either a cellular Phone or using a browser on the PC connected to the Internet, so that we control the system at any time and any place. Second, to provide more human-oriented interface, we integrate voice recognition functionalities into the system. Third, the system supports not only reactive services but also proactive services, based on the regularities of user behavior. Finally, by exploiting embedded technologies, the system could be run on the hardware that has less-processing power and storage. We have implemented the system on the embedded board consisting of StrongARM CPU with 205MHz, 32MB SDRAM, 16MB NOR-type flash memory, and Relay box. Under these hardware platforms, software components such as embedded Linux, HTK voice recognition tools, GoAhead Web Server, and GPIO driver are cooperated to support user-friendly intelligent space.

A Performance Improvement Scheme for a Wireless Internet Proxy Server Cluster (무선 인터넷 프록시 서버 클러스터 성능 개선)

  • Kwak, Hu-Keun;Chung, Kyu-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.415-426
    • /
    • 2005
  • Wireless internet, which becomes a hot social issue, has limitations due to the following characteristics, as different from wired internet. It has low bandwidth, frequent disconnection, low computing power, and small screen in user terminal. Also, it has technical issues to Improve in terms of user mobility, network protocol, security, and etc. Wireless internet server should be scalable to handle a large scale traffic due to rapidly growing users. In this paper, wireless internet proxy server clusters are used for the wireless Internet because their caching, distillation, and clustering functions are helpful to overcome the above limitations and needs. TranSend was proposed as a clustering based wireless internet proxy server but it has disadvantages; 1) its scalability is difficult to achieve because there is no systematic way to do it and 2) its structure is complex because of the inefficient communication structure among modules. In our former research, we proposed the All-in-one structure which can be scalable in a systematic way but it also has disadvantages; 1) data sharing among cache servers is not allowed and 2) its communication structure among modules is complex. In this paper, we proposed its improved scheme which has an efficient communication structure among modules and allows data to be shared among cache servers. We performed experiments using 16 PCs and experimental results show 54.86$\%$ and 4.70$\%$ performance improvement of the proposed system compared to TranSend and All-in-one system respectively Due to data sharing amount cache servers, the proposed scheme has an advantage of keeping a fixed size of the total cache memory regardless of cache server numbers. On the contrary, in All-in-one, the total cache memory size increases proportional to the number of cache servers since each cache server should keep all cache data, respectively.