Journal of the Korean Institute of Telematics and Electronics
/
v.11
no.2
/
pp.1-4
/
1974
Matrix inversion is very inefficient for computing direct solutions of the large sparse systems of linear equations that arise in many network problems. This paper describes some computer programming techniques for taking advantage of the sparsity of the admittance matrix. with this method, direct solutions are computed from sparse matrix. It is Possible to gain a significant reduction in computing time, memory and round-off emir[r. Retails of the method, numerical examples and programming are given.
Transactions of the Korean Society of Automotive Engineers
/
v.8
no.2
/
pp.138-150
/
2000
This study is concerned with computerized multi-level substructuring methods and stress analysis of coil springs. The purpose of substructuring methods is to reduce computing time and capacity of computer memory by multiple level reduction of the degrees of freedom in large size problems which are modeled by three dimensional continuum finite elements. In this paper, a super element has been developed for stress analysis of coil springs. The spring super element developed has been examined with tension and torsion simulation of cylindrical bars for demonstrating its validity. The result shows that the super element enhances the computing efficiency while it does not affect the accuracy of the results and it is ready for application to the coil spring analysis.
Many researchers have studied flash memory in order to replace hard disk storages. Many FTL algorithms have been proposed to overcome physical constraints of flash memory such as erase-before-write, wear leveling, and poor write performance. Therefore, these constraints should be considered for testing FTL algorithms and the performance evaluation of flash memory. As doing the experiments, we suffer from several problems with costs and settings in experimental configuration. When we, for example, replay the traces of Oracle to evaluate the I/O performance with flash memory, it is hard to extract exact traces of I/O operations in Oracle. Since there are only write operations in the log, it is impossible to gather read operations. In MySQL and SQLite, we can gather the read operations by changing I/O functions in the source codes. But it is not easy to search for the exact points about I/O and even if we can find out the points, we might get wrong results depending on how we modify source codes to get I/O traces. The FlaSim proposed in this paper removes the difficulties when we evaluate the performance of FTL algorithms and flash memory. Our Linux drivers emulate the flash memory as a hard disk. And we can easily obtain the usage statistics of flash memory such as the number of write, read, and erase operations. The FlaSim can be gracefully extended to support the additional modules implemented by novel algorithms and ideas. In this paper, we describe the structure of FTL emulator, development tools and operating methods. We expect this emulator to be helpful for many experiments and research with flash memory.
Multitenancy has gained growing importance with the development and evolution of cloud computing technology. In a multitenant environment, multiple tenants with different demands can share a variety of computing resources (e.g., CPU, memory, storage, network, and data) within a single system, while each tenant remains logically isolated. This useful multitenancy concept offers highly efficient, and cost-effective systems without wasting computing resources to enterprises requiring similar environments for data processing and management. In this paper, we propose a novel approach supporting multitenancy features for Apache Hadoop, a large scale distributed system commonly used for processing big data. We first analyze the Hadoop framework focusing on "yet another resource negotiator (YARN)", which is responsible for managing resources, application runtime, and access control in the latest version of Hadoop. We then define the problems for supporting multitenancy and formally derive the requirements to solve these problems. Based on these requirements, we design the details of multitenant Hadoop. We also present experimental results to validate the data access control and to evaluate the performance enhancement of multitenant Hadoop.
Park, Min-Jae;Lee, Jae-Sung;Kim, Soo-Mee;Kang, Ji-Yeon;Lee, Dong-Soo;Park, Kwang-Suk
Nuclear Medicine and Molecular Imaging
/
v.43
no.5
/
pp.443-450
/
2009
Purpose: Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. Materials and Methods: The preliminary tests for the possibility on virtual manchines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Results: Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Conclusion: Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify.
Journal of Information Technology and Architecture
/
v.11
no.4
/
pp.449-462
/
2014
In big data era, there are a number of considerable parts in processing systems for capturing, storing, and analyzing stored or streaming data. Unlike traditional data handling systems, a big data processing system needs to concern the characteristics (format, velocity, and volume) of being handled data in the system. In this situation, virtualized computing platform is an emerging platform for handling big data effectively, since virtualization technology enables to manage computing resources dynamically and elastically with minimum efforts. In this paper, we analyze resource utilization of virtualized computing resources to discover suitable deployment models in Apache Hadoop and HBase-based big data processing environment. Consequently, Task Tracker service shows high CPU utilization and high Disk I/O overhead during MapReduce phases. Moreover, HRegion service indicates high network resource consumption for transfer the traffic data from DataNode to Task Tracker. DataNode shows high memory resource utilization and Disk I/O overhead for reading stored data.
In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.
In this paper, we propose a new dynamic reconfiguration method using application-level checkpointing in a grid computing environment with Cactus and Globus. The existing dynamic reconfiguration methods have been dependent on a specific hardware and operating system. But the proposed method performs a dynamic reconfiguration without supporting specific hardwares and operating systems and, an application is programmed without considering a dynamic reconfiguration. In the proposed method, the job starts with an initial configuration of Computing resources and the job restarts including new resources dynamically found at run-time. The proposed method determines whether to include the newly found idle sites by considering processor performance and available memory of the sites. Our method writes the intermediate results of the job on the disks using system-independent application-level checkpointing for real-time visualization during the job runs. After reconfiguring idle sites and idle processors newly found, the job resumes using checkpointing files. The proposed dynamic reconfiguration method is proved to be valid by decreasing total execution time In K*Grid.
Park, Min Gyun;Zhe, Piao Zhen;La, Hyun Jung;Kim, Soo Dong
Journal of Internet Computing and Services
/
v.14
no.2
/
pp.73-85
/
2013
As a way of augmenting constrained resources of mobile devices such as CPU and memory, many works on mobile cloud computing (MCC), where mobile devices utilize remote resources of cloud services or PCs, /have been proposed. A typical approach to resolving resource problems of mobile nodes in MCC is to offload functional components to other resource-rich nodes. However, most of the current woks do not consider a characteristic of dynamically changed MCC environment and propose offloading mechanisms in a conceptual level. In this paper, in order to ensure performance of highly complex mobile applications, we propose four different types of offloading mechanisms which can be applied to diverse situations of MCC. And, the proposed offloading mechanisms are practically designed so that they can be implemented with current technologies. Moreover, we define cost models to derive the most sutilable situation of applying each offloading mechanism and prove the performance enhancement through offloadings in a quantitative manner.
Journal of the Korea Institute of Information Security & Cryptology
/
v.21
no.1
/
pp.177-186
/
2011
Mobile services which are applied PC performance and mobile characteristics are increased with spread of the smartphone. Recently, mobile cloud service is getting the spotlight as a solution of mobile service problems that mobile device is lack of memory, computing power and storage and mobile services are subordinate to a particular mobile device platform. However, mobile cloud service has more potential security threats by the threat inheritance of mobile service, wireless network and cloud computing service. Therefore, security threats of mobile cloud service has to be removed in order to deploy secure mobile cloud services and user and manager should be able to respond appropriately in the event of threat. In this paper, We define mobile cloud service threats by threat analysis of mobile device, wireless network and cloud computing and we propose mobile cloud service countermeasures in order to respond mobile cloud service threats and threat scenarios in order to respond and predict to potential mobile cloud service threats.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.