• Title/Summary/Keyword: in-flight simulation

Search Result 803, Processing Time 0.03 seconds

Development of FAA AC120-40B Level D Flight Dynamics Model for T-50 Full Mission Trainer (FAA AC120-40B Level D급 T-50 전술훈련 시뮬레이터)

  • Jeon, Dae-Keun;Lee, Se-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2006
  • FAA AC120-40B Level D flight dynamics model for T-50 Full Mission Trainer was successfully developed. Since AC120-40B Level D requires the quantitative validation tests for simulation model compared with flight test data, T-50 flight test data for each validation test item was gathered, and also automatic test environments which include AFT (Automatic Fidelity Tester) and STA (Simulation Test Analyzer) were developed. The final test results after the iterative test-tuning processes were all within the tolerances specified in AC120-40B Level D. Qualification Test Guide, QTG contains the detail test processes and results.

  • PDF

In-Flight Simulation for the Evaluation of Flight Control Law (비행제어계 평가를 위한 항공기 공중모의 비행시험)

  • Go,Jun-Su;Lee,Ho-Geun;Lee,Jin-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.79-88
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The FBWA configurations are of the same generic form of the Korean advanced trainer. The normal acceleration (Nz) and pitch rate (q) feedback control system is employed for longitudinal axis and roll rate (p) and lateral acceleration (Ny) feedback flight control law is developed in lateral/ directional axis. The flight tests for the FBW A dynamics evaluation were executed for the target aircraft (FBWA) on the IFS (In-Flight-Simulator) aircraft . The test results showed that Level 1 handling qualities for the most unstable flight regime and Level 1/2 for the landing approach flight regime were achieved. And the designed FBWA flight control law has revealed acceptable CHR (Cooper-Harper handling qualities Ratings).

Longitudinal Flight Control of a Transport Aircraft Using Thrust Only

  • Ochi, Y.;Kanai, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.3-148
    • /
    • 2001
  • This paper deals with a problem of decreasing the airspeed and the altitude of a transport aircraft using thrust only. Such a situation can occur, if the aircraft loses all hydraulic power that drives the control surfaces. A controller for flight path angle control is designed using the model following servo control method, which is a PI-type optimal regulator. For computer simulation, a simulation model that covers a range of flight envelope is made using given linear models and trim points at some flight conditions. Nondimensional aerodynamic coefficients, derivatives and trim points that are not at the given trim points are computed by linear interpolation. The model is effective in simulation where the trim point varies. Simulation using ...

  • PDF

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

The Analyses of Dynamic Characteristics and Flight Test Results of Airship Throughout the Flight Test (비행 시험을 통한 비행선의 운동 특성 해석 및 시험 결과 분석)

  • Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.214-221
    • /
    • 2005
  • For decades, airships have being developed in Europe (especially German) and America. Airships are planning to be used for advertisements and airliners as well. In Korea, KARI (Korea Aerospace Research Institute) is developing stratospheric communication airship and the similar research is carried out in Japan. Among them, Zeppelin of German has the cutting-edge airship technology with Zeppelin NT. In this paper, the flight performance and stability were evaluated by comparing mathematical theory and the real test. The stability was examined through dynamic modeling and assured by designing controllers at each flight mode. Elevator angle, rudder angle, magnitude of thrust and tilting angle of thrust vector were used as control inputs. Moreover, after measuring the airship velocity, flight direction, magnitude and direction of the wind, attitude angles and trajectories of the airship at each flight mode, the results were compared with the simulation. To get the reasonable data, low-pass filter and band-stop filter were designed to get rid of the sensor noise and engine vibration. The test was accomplished at cruise mode, turning mode, and deceleration. To conclude, with comparing the simulation data and flight test data, it could be known that the dynamic model used in this paper was reasonable.

A Study on the Design and Validation of Switching Mechanism in Hot Bench System-Switch Mechanism Computer Environment (HBS-SWMC 환경에서의 전환장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Lee, Dong-Kyu;Park, Sang-Seon;Park, Sung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.711-719
    • /
    • 2008
  • Although non-real time simulation and pilot based evaluations are available for the development of flight control computer prior to real flight tests, there are still many risky factors. The control law designed for prototype aircraft often leads to degraded performance from the initial design objectives, therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS(In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV(High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA(Variable stability. In flight Simulation Test Aircraft) programs. This paper addresses the concept of switching mechanism for FLCC(Flight Control Computer)-SWMC(Switching Mechanism Computer) using 1553B communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed to reduce abrupt transient and minimize the integrator effect in pitch axis control law. It hans been turned out from the pilot evaluation in real time that the aircraft is controllable during the inter-conversion process through the flight control computer, and level 1 handling qualities are guaranteed. In addition, flight safety is maintained with an acceptable transient response during aggressive maneuver performed in severe flight conditions.

Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking (기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구)

  • 민병문;노태수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

Integrated Flight Simulation Program for Multicopter Drones by Using Acausal and Object-Oriented Language Modelica (비인과, 객체지향적 언어 모델리카를 이용한 멀티콥터형 드론의 통합 비행 시뮬레이션 프로그램)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.437-446
    • /
    • 2017
  • An integrated flight simulation program for multicopter drones is presented. The program includes rigid body dynamics, propeller thrust, battery energy, control, and air. Using this program, users can monitor and analyze the states of drones along flight trajectories. As a programming language, Modelica has been chosen, that specializes in simulation program development. Modelica enables users to develop simulation programs efficiently due to acausal and object oriented properties. For missions including horizontal and vertical maneuvers, many dynamical states of drones have been analyzed with simulation results.

Development of Simulation Environment for Proximity Flight Using Simulink and X-Plane (Simulink와 X-Plane을 이용한 모의 근접비행 시뮬레이션 환경 개발연구)

  • Lee, Sanghoon;Park, Chanhwi;Park, Younghoo;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.465-472
    • /
    • 2021
  • Prior to the actual flight test of the separation-reintegration situation of fixed-wing mother and child UAVs in the air, it is necessary to verify the flight control system of child UAV through simulations. In this paper, we build a simulation environment for the development of a child UAV flight control system in a lab environment based on the wake turbulence of X-Plane. To this end, the aerodynamics analysis of child UAV was performed, and Simulink was used to simulate aircraft, and X-Plane was utilized to implement visualization, wind, gusts, and mother UAV movements. The simulation environment built by performing simulated proximity flights was verified by applying the guidance and control algorithm to the child UAV model within Simulink. Furthermore, the flight results confirm the area in which the child UAV can safely fly from the rear of the mother UAV.

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF