• Title/Summary/Keyword: in-filled concrete

Search Result 890, Processing Time 0.025 seconds

Shear strength analyses of internal diaphragm connections to CFT columns

  • Kang, Liping;Leon, Roberto T.;Lu, Xilin
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1083-1101
    • /
    • 2015
  • Previous theoretical equations for the shear capacity of steel beam to concrete filled steel tube (CFT) column connections vary in the assumptions for the shear deformation mechanisms and adopt different equations for calculating shear strength of each component (steel tube webs, steel tube flanges, diaphragms, and concrete etc.); thus result in different equations for calculating shear strength of the joint. Besides, shear force-deformation relations of the joint, needed for estimating building drift, are not well developed at the present. This paper compares previously proposed equations for joint shear capacity, discusses the shear deformation mechanism of the joint, and suggests recommendations for obtaining more accurate predictions. Finite element analyses of internal diaphragm connections to CFT columns were carried out in ABAQUS. ABAQUS results and theoretical estimations of the shear capacities were then used to calibrate rotational springs in joint elements in OpenSEES simulating the shear deformation behavior of the joint. The ABAQUS and OpenSEES results were validated with experimental results available. Results show that: (1) shear deformation of the steel tube dominates the deformation of the joint; while the thickness of the diaphragms has a negligible effect; (2) in OpenSEES simulation, the joint behavior is highly dependent on the yielding strength given to the rotational spring; and (3) axial force ratio has a significant effect on the joint deformation of the specimen analyzed. Finally, modified joint shear force-deformation relations are proposed based on previous theory.

An Experimental Study on the Fire Behavior of CFT Column under the Constant Axial Loading Condition in Fire (일정축력을 받는 콘크리트 충전 각형기둥의 경계조건 변화에 따른 화재거동특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Min, Byung-Youl;Kwon, In-Kyu;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • A concrete filled square steel tube (CFT) is composed of the external steel material, which its strength is reduced in fire due to sudden temperature increase, and the internal concrete with high thermal capacity that can ensure the fire resistance performance of the structure. Therefore, research about the influence factors of the structural performance of CFT column is required in order to apply CFT column to a fire resisting structure, and additional research about influence for each condition is also necessary. Among the influence factors, the boundary condition between column and beam is important structurally, and it is one of the major factors that determine overall fire resisting performance. This study performed a fire experiment under loading in order to analyse the influences of CFT column to the boundary condition. As the results of the experiment, fire resistance time of 106 minutes was ensured for the clamped-end condition but 89 minutes for the hinge-end condition in case of the 360 cross section. And, fire resistance time of 113 minutes was ensured for the clamped-end condition but 78 minutes for the hinge-end condition in case of the 280 cross section.

Pilot Test of Biofilter and Vegetation Bed for Contaminated Ditch Treatment at Summer (하절기 오염 소하천 정화를 위한 생물여과조와 식생대의 Pilot Test)

  • Lee, Sang-Hwa;Cho, Moon-Chul;Park, Young-Seek;Moon, Jung-Hyun;Kim, Jwa-Kwan
    • Journal of Wetlands Research
    • /
    • v.1 no.1
    • /
    • pp.7-16
    • /
    • 1999
  • The objective of this study is to recover the contaminated ditch by using a biofilter filled up with waste-concrete media and vegetation bed. Two systems were tested for elimination of organic compounds, turbidity, nitrogen and phosphate. System 1 is three-stage system which consisted of one biofilter and two vegetation bed, system 2 has three-stage system consisted of one biofilter, one vegetation bed (four bed), and one media trench operated in series. In system 1, HRT of biofilter was 4 hour, and Oenanthe javanica was planted in two vegetation bed. In system 2, HRT of biofilter was varied 2 hours and Persicaria chinensis was planted on the top of the biofilter. And Oenanthe javanica, Hydrocharis asiatica, Salvinia natans were planted in four bed of a vegetation bed and the second vegetation bed of system 1 was rebuilt to a media trench bed. The elimination rate of BOD and turbidity was over 90% in both systems. The mean elimination rates 40~50%(system 1), 30~40%(system 2) for T-N and 40~50% (system 1), 30~40%(system 2)for T-P. T-N and T-P elimination performance of system 1 was a little higher(10%) than that of system 2. Results showed that vegetation bed are not efficient in reducing T-N and T-P. It was considered that HRT of vegetation bed of both systems was much lower(1~2hr) than that of conventional system(5~20days).

  • PDF

A Study on Optimum Confined Effect for Internally Confined Hollow CFT Columns under Uniaxial Compression (일축압축을 받는 내부 구속 중공 CFT 기둥의 최적 구속 효과 연구)

  • Won, Deok Hee;Han, Taek Hee;Yoon, Na Ri;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.227-235
    • /
    • 2012
  • Recently, study of confining effect in column members is progressed. But these studies are limited to about RC column and external confining effect in hollow columns. Internal confining effect in hollow columns has not researched. Internal confining stress is assumed the same external confining stress in hollow columns. In this study, there are to investigate the internal direction confining effect in ICH CFT column by FEA analysis. FEA analysis methods have verified by experimental values. Parametric study has performed as thickness of internal tube, hollow ratio, diameter of column and bending stiffness between concrete and external tube. Modified equations have suggested to estimating economic and reasonable thickness of internal tube.

Effects of Post-Tensioning Tendons and Vehicle Speeds on Dynamic Response of Concrete-Filled Steel Tubular Tied Arch Girder (긴장재 및 차량속도 변화에 따른 콘크리트 충전 타이드 아치형 거더의 동적거동)

  • Roh, Hwasung;Hong, Sanghyun;Park, Kyunghoon;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.163-172
    • /
    • 2011
  • The CFTA girder developed is a concrete filled steel tubular system with arched shape and external post-tensioning (PT) tendons which control the initial camber and the bending stress of the girder. In the present study the effects of the PT tendons on the dynamic behavior of the girder subjected to a moving vehicle load are numerically investigated. Various levels for the tendon quantity and the tendon forces are considered, using the existing FE model of the girder. The vehicle considered is a DB-24 truck and is modeled with two tracks-three axles. Equivalent-load pulse time histories are applied to each node to simulate the moving vehicle, depending on the time of arrival and the discretization. The vehicle speeds are varied from 40 km/hr to 100 km/hr with increment of 20 km/hr. The analysis results show that the tendon forces do not produce any influences on the dynamic responses of the girder. However the dymamic deflection of the girder increases when a smaller amount of tendons is used. The Dynamic Amplification Factors (DAF) are evaluated based on the static and dynamic responses. Much lower values of the DAF are obtained, even no tendons applied, than those provided by the design criteria of the AASHTO LRFD and the Korea Highway Standard Specification.

Safety Evaluation of Semi-Slim AU Composite Beam During Construction (세미슬림 AU 합성보의 시공 단계 안전성 평가)

  • Kim, Young-Ho;Kim, Do-Bum;Kim, Dae-Jin;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.57-66
    • /
    • 2018
  • Recently various composite beams in which concrete is filled in the U-shaped steel plate have been developed for saving story height and reducing construction period. Due to the high flexural stiffness and strength, they are widely being used for the building with large loads and long spans. The semi-slim AU composite beam has proven to take highly improved stability compared to the existing composite beams, because it consists of the closed steel section by attaching cap-type shear connectors to the upper side of U-shaped steel plate. In this study the finite element analyses were performed to evaluate the safety of the AU composite beam with unconsolidated concrete which were sustained through the closed steel section during the construction phase. The analyses were performed on the two types of cross section applied to the fabrication of AU composite beams, and the results were compared to the those of 2-point bending tests. In addition, the flexural performance according to the space of intermittent cap-type shear connectors and the location of reinforcing steel bars for compression was comparatively investigated. Through the results of analytical studies, it is preferable to adopt the yield moment of AU composite beam for evaluating the safety in the construction phase, and to limit the space of intermittent shear connectors to 400 mm or less for the construction load.

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

Influence of stiffeners on the performance of blind-bolt end-plate connections to CFST columns

  • Ding, Fa-xing;Pan, Zhi-cheng;Liu, Peng;Huang, Shi-jian;Luo, Liang;Zhang, Tao
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.447-462
    • /
    • 2020
  • The paper aims to investigate the mechanical mechanism and seismic effect of stiffeners in blind bolt endplate connection to CFST column. A precise 3D finite element model with considering the cyclic properties of concrete and steel materials was established, and the efficiency was validated through monotonic and cyclic test data. The deforming pattern and the seismic performance of the unstiffened and stiffened blind bolt endplate connections were investigated. Then a parametric analysis was conducted to analyze the contribution of stiffeners and the joint working behaviors with endplate under cyclic load. The joint stiffness classifications were compared and a supplement stiffness classification method was proposed, and the energy dissipation ability of different class connections were compared and discussed. Results indicated that the main deformation pattern of unstiffened blind bolt endplate connections was the local bending of end plate. The vertical stiffeners can effectively alleviate the local bending deformation of end plate. And influence of stiffeners in thin endplate and thick endplate was different. Based on the stiffness of external diaphragm welded connection, a more detailed rigidity classification was proposed which included the pin, semi-rigid, quasi-rigid and rigid connection. Beam was the main energy dissipation source for rigid connection. For the semi-rigid and quasi-rigid connection, the extended endplate, stiffeners and steel beam would all participate in the energy dissipation.

Development of Green Retaining-wall System with Native Evergreen Plants Corresponding to the Southern Region - A Case Study of Tongyeong City in Gyeongsangnam-do - (남부지역의 특성을 고려한 상록벽면녹화 공법 개발 -경남 통영시를 사례로-)

  • Kang Ho-Chul;Kim Kwang-Ho;Huh Keun-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.2 s.109
    • /
    • pp.32-47
    • /
    • 2005
  • This study was carried out to investigate and propose a green-wall system with evergreen plants for urban greening of Tongyeong City. To achieve these goals, the requirements and possibilities for wall greening were investigated and evaluated considering the location, topography, and climate of Tongyeong City. Existing walls were analyzed and then a suitable green wall system is proposed. Tongyeong City and its 151 islands covers the central and the southern parts of the Goseong peninsula. Most of the land is covered with hills and mountains; $43.9\%$ of the land area has a slope greater than $15\%$ and most hills and mountains near the urban area have a slope of more than $30\%$. As a result of the topographical properties, concrete retaining walls can often be seen along the streets in urbanized areas. These retaining walls are not only unattractive, but they also create environmental problems, and thus should be replaced with native evergreen plants. Options for replacing the retaining walls include evergreen vine-plants such as Hedaa spp. and Euonymus radicans, but native evergreen shrubs such as Pittosporum tobira, Nandina domestica, Raphiolepis umbellata, Ilex cornuta, flex crenata, Fatsia japonic, and Aucuba japonica may be a more attractive option. Current wall conditions are unsuitable for planting vines, therefore, a reservoir-drainage-type plant box filled with a light artificial substrate is required for greening these concrete retaining walls. These might be irrigated in the dry season and fertilized annually by an appropriate system. These plant boxes could be attached along the entire walls. An experiment investigating effects of substrates and bark-chip mulching on the growth of Hedera spp. showed that the mixture of cerasoil and field soil(v/v, 4:6) was superior to field soil alone and to the mixture of perlite small grain, large grain, and field soil(v/v/v, 2:2:6). Bark-chip mulching tended to increase the growth of Hedera spp..

An Experimental Study on the Bending Behaviour of Steel Grid Composite Deck (격자형 강합성 바닥판의 휨거동에 대한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.175-184
    • /
    • 2011
  • To take advantage of reduced on-site construction periods and minimize traffic impacts various types of steel grid composite deck have been developed since 1930's. Modular prefabricated unfilled grid decks permit a long-distance transportation and construction under unfavorable condition, for example, in mountainous regions due to its comparatively light-weighter structure than fully filled grid deck. In this study bending tests of unfilled grid decks for the deck member of various kinds of infrastructure are carried out, bending strength and behaviour of composite action are experimentally evaluated. In this bending test, design variables are considered, such as type of shear connection between steel grid and concrete slab, spacing between cross bars and thickness of concrete slab. Through test results bending strength and behaviour of composite action are evaluated, reference data for proper type of shear connection and other details of the deck, such as spacing between cross bars, are obtained.