• Title/Summary/Keyword: in-filled concrete

Search Result 890, Processing Time 0.026 seconds

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

A Fundamental Study on the Development of Fire Resistance Filling of Friendly Environment Using Aerated Concrete (기포콘크리트를 이용한 친환경 내화충전제개발에 관한 기초적 연구)

  • Lee, jong-il;Lim, Nam-Gi
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.119-126
    • /
    • 2007
  • In this study, we processed two procedures of application test of filler for fire-resistance utility that are new application methods of aerated concrete and properties test of aerated concrete according to mixing ratio because we investigated the better use of aerated concrete as filler for fireproof safety and we proposed basic data about standardization of mixing of aerated concrete. We measured flow and volume change of aerated concrete. And if its volume doesn't change, we added measuring unit weight and compressive strength. To test application of aerated concrete as filler for fireproof safety, we filled up aerated concrete to fireproof safety according to suitable mixing ratio. Then we measured maximum temperature of inner part of fireproof safety in accordance with the standard test of fireproof. According to the results, aerated concrete as filler for fireproof safety could be possibly used. So when we make aerated concrete, we should consider using an adding agent as well as a foaming agent.

Structural Performance of High Strength Grout-Pilled Splice Sleeve System (고강도 모르타르 충전식 철근이음의 구조성능에 관한 실험연구)

  • 김형기;안병익;남재현;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.516-524
    • /
    • 2001
  • Among many connection methods of reinforcing bar, the grout-filled splice sleeve system is very effective method of precast concrete construction due to its superior construction efficiency, such as large allowable limit to arrangement of reinforcing bars, good application of large sized reinforcing bars. In this study, totally 20 full-sited specimens were made and tested under monotonic and cyclic loading in order to extend the usage range of grout-filled splice sleeve system. The experimental variables adopted in this study are size of reinforcing bars embedded in upper and lower part of sleeve and compressive strength of filled mortar etc. After test was performed, the results were compared and analyzed with respect to previous test of author. Following main conclusions are obtained : 1) The structural performance of splice sleeve system is improved with increasing compressive strength of filled mortar. And also it was verified that the splice sleeve system with over 700 kgf/㎠ mortar compressive strength and over 6.54 development length of reinforcing bar retains the structural performance of over A class(AIJ Criteria). 2) In the case of using different size of reinforcing bars embedded in upper and lower part of sleeve, the result show that splice sleeve matching with large sized reinforcing bar must be used. And also up to 2 level smaller size of reinforcing bar compared to large reinforcing bar embedded in sleeve can be used.

Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames

  • Xianggang Zhang;Gaoqiang Zhou;Xuyan Liu;Yuhui Fan;Ercong Meng;Junna Yang;Yajun Huang
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.537-543
    • /
    • 2023
  • To study the seismic behavior of recycled aggregate concrete filled circular steel tube (RACFCST) frames, the seismic behavior experiment of RACFCST frame was carried out to measure the hysteresis curve, skeleton curve and other seismic behavior indexes. Moreover, based on the experimental study, a feasible numerical analysis model was established to analyze the finite element parameters of 8 RACFCST frame specimens, and the influence of different variation parameters on the seismic behavior index for RACFCST frame was revealed. The results showed that the skeleton curve of specimens under different axial compression ratios were divided into three stages: elastic stage, elastic-plastic stage and descending stage, and the descending stage was relatively stable, indicating that the specimen had stronger deformation capacity in the descending stage. With the increase of axial compression ratio, the peak bearing capacity of all specimens reduced gradually, and the reduction was less than 5%. With the decrease of beam-column linear stiffness ratio, the peak bearing capacity decreased gradually. With the decrease of yield bending moment ratio of beam-column, the peak bearing capacity decreased gradually, and the decreasing rate of peak bearing capacity gradually accelerated. In addition, compared with the axial compression ratio, the beam-column linear stiffness ratio and the yield bending moment ratio of beam-column had a more significant influence on the peak bearing capacity of RACFCST frame.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Development and Application of CFT without Fire Protection using High Performance Steel and Concrete

  • Hong, Seok-Beom;Kim, Woo-Jae;Park, Hee-Gon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.272-281
    • /
    • 2013
  • Concrete filled tube (CFT) columns, which consist of a steel tube filled with concrete, combine the benefits of the two materials. The steel tube provides a confining pressure to the concrete, while the local buckling of steel plate can be prevented by the concrete core. CFT columns also have a high fire resistance due to the heat storage effect of concrete under fire. For this reason, it is possible to develop CFT columns without fire protection measures. CFT columns without fire protection have many advantages, including quality control, cost reduction, better space efficiency and a shorter construction period. Due to these advantages, studies on the development of CFT columns without fire protection measures have been performed. However, CFT columns lose their bearing capacity under fire because the steel tube is exposed to the outside. As a result, the structure is collapsed, causing significant damage. In this research, we made a CFT column using high strength concrete (100 MPa) and high strength steel (800 MPa). We use steel fiber and nylon fiber with concrete to provide fire resistance. We perform the fresh concrete experiment and investigate the fire resistance of the CFT column (${\Box}400{\times}400{\times}15{\times}3000mm$) under loading. To investigate the effect of steel fiber on increasing fire resistance, we compare the fire resistance time according to the steel fiber. Through the test, it was found that the CFT specimen with steel fiber had better fire resistance performance than other cases.

Engineering Properties of Concrete with Rice-Straw Ash (볏짚재를 혼입(混入)한 콘크리트의 공학적(工學的) 성질(性質))

  • Sun, Chan Yong;Lee, Hee Man;Kim, Young Ik;Kim, Kyung Tae;Seo, Dae Seuk;Nam, Ki Sung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.285-292
    • /
    • 1998
  • This study was performed to evaluate the engineering properties of concrete using normal portland cement, natural aggregates and rice-straw ash. The following conclusions were drawn; 1. The unit weight was in the range of $2,250{\sim}2,335kgf/m^3$, the weights of those concrete were decreased 1~5% than that of the normal cement concrete, respectively. 2. The highest strength was achieved by 5% rice-straw ash filled rice-straw ash concrete, it was increased 17% by compressive strength, 30% by tensile strength and 21% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 4,059~4,360m/s, which was showed about the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity was showed by 5% rice-straw ash filled rice-straw ash concrete. 4. The acid-proof was increased with increase of the content of rice-straw ash. The acid-proof was increased 1.15 times by 5% rice straw ash, 1.45 times by 10%, 1.6 times by 15% rice-straw ash filled concrete than that of the normal cement concrete, respectively.

  • PDF

A study of the Method on the Packing ability of Concrete Filled in Steel Tube Structure by High Strength and High Flowable Concrete (고강도 고유동 콘크리트를 이용한 콘크리트충전강관(CFT)구조의 충전성에 관한 공법 연구)

  • Kang, Yong-Hak;Jung, Keun-Ho;Lim, Nam-Ki;Lee, Young-Do;Jung, Jae-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.163-169
    • /
    • 2002
  • In this study, there are kind of property experiments like fluidity, compressive strength, bleeding measurement, concrete sink for CFT use high fluidity concrete. The property difference between before transmit and after transmit concrete in the mock up test with ready mixed concrete equipment is examined. The variable factors in mock up are diaphragm existence and nonexistence, diaphragm placing hole sizes. To investing the concrete Property under diaphragm, concrete packing ability, hydration heat, core specimen strength tests are performed.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

The Influence of the Volume Contents of Sand in Mortar on the Properties of Self Compacting Concrete (잔골재 용적비가 고유동 콘크리트의 성질에 미치는 영향)

  • Choi Jae-Jin;Yoo Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.755-758
    • /
    • 2004
  • Self-compactability is defined as a capability of concrete to be uniformly filled and compacted in every corners of formwork by its self-weight without vibration during placing. To evaluate the self compactability of self compacting concrete, the slump flow, the time of slump flow at 500mm and U-box apparatus testing methods are used. In this research, the fresh and hardened properties of self compacting concrete using ground granulated blast furnace slag as a part of cement were investigated for the volume contents of sand in the mortar. The workability, flowing characteristics, air content and compressive strength of concrete were tested and the results were compared with the different volume contents of sand in the mortar. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of self compacting concrete.

  • PDF