• Title/Summary/Keyword: in-construction monitoring

Search Result 1,716, Processing Time 0.033 seconds

Development and Application of Construction Control System for Excavation (굴착 관리 정보화 시스템의 개발 및 적용)

  • 권오순;정충기;김재관;이해성;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.153-166
    • /
    • 1999
  • Since the reliability of results by the existing analyzing method is low, in the case of for excavation performed in urban area whose stability is of great importance, construction control based on field monitoring is always necessary. But the field monitoring reflects only the behavior of construction process that has already been carried out, and it has limitations in predicting the behavior of the expected construction process, which is practically more important for construction control. In this study, construction control system for excavation which can predict the behavior of the expected processes during construction with high degree of accuracy, is developed by adopting inverse analysis. The inverse analied applied field monitoring results to excavation analysis can improve the reliability of predicted results. The developed system uses an elasto-plastic soil spring model for the excavation analysis and the minimization of least squared errors between measured displacements and calculated displacements for the inverse analysis. All the required processes for construction control can be performed as an integrated work within the system reflecting real time application and user's convenience. Their applicabilitis are confirmed by two case studies.

  • PDF

Case Study of Earth Anchor Axial Force Change Characteristic through Monitoring during Construction Period (시공중 계측을 통한 어스앵커 축력변화 특성사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.285-292
    • /
    • 2004
  • Earth Anchor method as a supporting system is widely used in the large scale deep excavation of urban areas or slope excavation project. Considering the application frequency of that method and catastrophe of that method under unproper construction management, we can find out many problems relevant to the domestic design and construction management of earth anchor method. When we encounter the cases of rapid increments and various decrements in earth anchor axial forces, considering the characteristic of earth anchor method, it is an essential point to catch the reasons and to prepare countermeasures. This article introduces two actual monitoring examples based on the close analyses of measured data in a typical large scale deep excavation project and slope excavation project. One is a rapidly increasing case of earth anchor axial forces with the continuous advance of incremental deformation in a geological layer interface. And another is a decreasing case of earth anchor axial forces with the construction conditions. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Game Engine Driven Synthetic Data Generation for Computer Vision-Based Construction Safety Monitoring

  • Lee, Heejae;Jeon, Jongmoo;Yang, Jaehun;Park, Chansik;Lee, Dongmin
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.893-903
    • /
    • 2022
  • Recently, computer vision (CV)-based safety monitoring (i.e., object detection) system has been widely researched in the construction industry. Sufficient and high-quality data collection is required to detect objects accurately. Such data collection is significant for detecting small objects or images from different camera angles. Although several previous studies proposed novel data augmentation and synthetic data generation approaches, it is still not thoroughly addressed (i.e., limited accuracy) in the dynamic construction work environment. In this study, we proposed a game engine-driven synthetic data generation model to enhance the accuracy of the CV-based object detection model, mainly targeting small objects. In the virtual 3D environment, we generated synthetic data to complement training images by altering the virtual camera angles. The main contribution of this paper is to confirm whether synthetic data generated in the game engine can improve the accuracy of the CV-based object detection model.

  • PDF

Evaluation Technique of Importance of Monitoring Systems for Earth and Rockfill Dam Safety (필댐 안전관리를 위한 계측기 중요도의 평가기법)

  • Lee, Jong-Wook;Kim, Jae-Hong;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.874-882
    • /
    • 2009
  • Continuous monitoring of dam performance is essential to earth and rockfill dams safety because it has to be guaranteed for safety during construction period of course and from initial impounding to a long term maintenance period of dam. Among the 31 dams managed by Kwater at present, the proportion of dams being over 20 years after completion of construction is 42% and it is estimated that the loss rate of monitoring devices will be increase as times. Monitoring devices would be impossible to repair since those are mostly installed in the dam body and foundation. If repairing of monitoring devices is possible, the expenditure will be expensive. Therefore reasonable decision making for abandonment, repair and alternation for loss of monitoring devices would be needed through the establishment of key instrument for earth and rockfill dam safety. In this study the process of monitoring for safety were modeled by failure modes of dams, adverse conditions related to failure mode, indicators of adverse condition and monitoring devices The relationship between failure mode and monitoring devices were systematically analyzed and established and evaluation technique for qualifying the importance of monitoring devices were presented.

  • PDF

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

A new decision method for construction scheme of shallow buried subway station

  • Qiu, Daohong;Yu, Yuehao;Xue, Yiguo;Su, Maoxin;Zhou, Binghua;Gong, Huimin;Bai, Chenghao;Fu, Kang
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2022
  • With the development of the economy, people's utilization of underground space are also improved, and a large number of cities have begun to build subways to relieve traffic pressure. The choice of subway station construction method is crucial. If an inappropriate construction method is selected, it will not only waste costs but also cause excessive deformation that may also threaten construction safety. In this paper, a subway station construction scheme selects model based on the AHP-fuzzy comprehensive evaluation. The rationality of the model is verified using numerical simulation and monitoring measurement data. Firstly, considering the economy and safety, a comprehensive evaluation system is established by selecting several indicators. Then, the analytic hierarchy process is used to determine the weight of the evaluation index, and the dimensionless membership in the fuzzy comprehensive evaluation method is used to evaluate the advantages and disadvantages of the construction method. Finally, the method is applied to Liaoyang east road station of Qingdao metro Line 2, and the results are verified by numerical simulation and monitoring measurement data. The results show that the model is scientific, practical and applicable.

Vibration Monitoring and Diagnosis System Framework for 3MW Wind Turbine (3MW 풍력발전기 진동상태감시 및 진단시스템 프레임워크)

  • Son, Jong-Duk;Eom, Seung-Man;Kim, Sung-Tae;Lee, Ki-Hak;Lee, Jeong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.553-558
    • /
    • 2015
  • This paper aims at making a dedicated vibration monitoring and diagnosis framework for 3MW WTG(wind turbine generator). Within the scope of the research, vibration data of WTG drive train are used and WTG operating conditions are involved for dividing the vibration data class which included transient and steady state vibration signals. We separate two health detections which are CHD(continuous health detection) and EHD(event health detection). CHD has function of early detection and continuous monitoring. EHD makes the use of finding vibration values of fault components effectively by spectrum matrix subsystem. We proposed framework and showed application for 3MW WTG in a practical point of view.

Effects of new construction technology on performance of ultralong steel sheet pile cofferdams under tidal action

  • Li, Ping;Sun, Xinfei;Chen, Junjun;Shi, Jiangwei
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.561-571
    • /
    • 2021
  • Cofferdams made of teel sheet piles are commonly utilized as support structures for excavation of sea-crossing bridge foundations. As cofferdams are often subject to tide variation, it is imperative to consider potential effects of tide on stability and serviceability of sheet piles, particularly, ultralong steel sheet piles (USSPs). In this study, a real USSP cofferdam constructed using new construction technology in Nanxi River was reported. The design of key parts of USSP cofferdam in the presence of tidal action was first introduced followed by the description of entire construction technology and associated monitoring results. Subsequently, a three-dimensional finite-element model corresponding to all construction steps was established to back-analyze measured deflection of USSPs. Finally, a series of parametric studies was carried out to investigate effects of tide level, soil parameters, support stiffness and construction sequence on lateral deflection of USSPs. Monitoring results indicate that the maximum deflection during construction occurred near the riverbed. In addition, measured stress of USSPs showed that stability of USSP cofferdam strengthened as construction stages proceeded. Moreover, the numerical back-analysis demonstrated that the USSP cofferdam fulfilled the safety requirements for construction under tidal action. The maximum deflection of USSPs subject to high tide was only 13.57 mm at a depth of -4 m. Sensitivity analyses results showed that the design of USSP cofferdam system must be further improved for construction in cohesionless soils. Furthermore, the 5th strut level before concreting played an indispensable role in controlling lateral deflection of USSPs. It was also observed that pumping out water before concreting base slab could greatly simplify and benefit construction program. On the other hand, the simplification in construction procedures could induce seepage inside the cofferdam, which additionally increased the deflection of USSPs by 10 mm on average.

A Study on Axial Stress Measurement and analysis of High-rise Building Structure Health Monitoring (초고층 구조물 건전성 모니터링을 위한 축응력 계측 및 해석에 관한 연구)

  • Lee, Jong-Ho;Kim, Seon-Gyu;Chun, Young-Jun;Lee, Seung-Min;Im, Jong-Soon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.91-92
    • /
    • 2015
  • This study was performed for application of Structural Health Monitoring system of Jamsil Lotte World Tower. Axial stresses of mega column and core wall are measured in the past 29 months for axial stress monitoring and evaluating predicted self weight. We use the midas gen program(FEM analysis program) with construction stage analysis mode to predict axial stress. 8 mega column axial stressmeters are installed at 21st floor and 4 core wall stressmeters are installed at 38th floor. Measurement data was obtained without creep and shrinkage effect.

  • PDF