• Title/Summary/Keyword: in-construction monitoring

Search Result 1,716, Processing Time 0.035 seconds

A Study on Mobile CCTV for Geofence Monitoring for Construction Safety (건설 안전용 지오펜스 감시를 위한 이동형 CCTV 연구)

  • Kang, Aetti;Kim, Sangwoo;Baek, Eunjin;Lee, Jisoo;Eom, Semin;Ham, Sungil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.381-382
    • /
    • 2023
  • Frequent accidents occur when workers at construction sites leave the safety zone, and particularly in the past 5 years, 9 fatal accidents occurred at the Korea Railroad Corporation due to train accidents on other tracks during track work. With the Severe Accident Punishment Act taking effect in January 2022, it is a priority to secure a safe work environment for workers at industrial (construction) sites. Therefore, there is a need to manage workers' departure from the safety zone (construction zone) and to facilitate communication within the construction zone. In this study, a mobile edge computing CCTV system is proposed that uses geofencing to determine whether workers are working in the danger zone, which can judge and respond in real-time to the ever-changing field environment. The proposed system is mobile and flexible, rather than server-based fixed CCTV. However, since it is designed mainly based on images, it has limitations in recognition rate depending on the environment such as distance, viewing angle, and illumination. As a way to compensate for this, it is required to develop more reliable equipment by combining technologies such as LiDAR and Radar.

  • PDF

Methodology To Prevent Local Optima And Improve Optimization Performance For Time-Cost Optimization Of Reinforcement-Learning Based Construction Schedule Simulation

  • Jeseop Rhie;Minseo Jang;Do Hyoung Shin;Hyungseo Han;Seungwoo Lee
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.769-774
    • /
    • 2024
  • The availability of PMT(Project Management Tool) in the market has been increasing rapidly in recent years and Significant advancements have been made for project managers to use for planning, monitoring, and control. Recently, studies applying the Reinforcement-Learning Based Construction Schedule Simulation algorithm for construction project process planning/management are increasing. When reinforcement learning is applied, the agent recognizes the current state and learns to select the action that maximizes the reward among selectable actions. However, if the action of global optimal points is not selected in simulation selection, the local optimal resource may receive continuous compensation (+), which may result in failure to reach the global optimal point. In addition, there is a limitation that the optimization time can be long as numerous iterations are required to reach the global optimal point. Therefore, this study presented a method to improve optimization performance by increasing the probability that a resource with high productivity and low unit cost is selected, preventing local optimization, and reducing the number of iterations required to reach the global optimal point. In the performance evaluation process, we demonstrated that this method leads to closer approximation to the optimal value with fewer iterations.

Enhancing Construction Safety through Wearable Technology - A Study of Employee Acceptance and Adoption in the USACE

  • Karen E. CARNAGO;Junshan LIU;Scott KRAMER
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.879-886
    • /
    • 2024
  • In the dynamic construction industry, particularly within the United States Army Corps of Engineers (USACE), ensuring worker safety in high-risk environments is a critical challenge. This study explores the integration of wearable technology in construction safety, focusing on its potential to enhance personal protective equipment (PPE). The primary goal of this study is to understand the factors influencing USACE employees' acceptance and adoption of wearable technology. Additionally, the research aims to assess the experiences of employees who have already used such technology to identify its practical benefits and levels of user satisfaction. A mixed-method approach was employed to gather qualitative insights from interviews with USACE safety experts and quantitative data from an online survey of USACE personnel. The findings indicate a general reluctance among workers to adopt wearable technology for monitoring work activities, mainly due to privacy concerns, usability issues, and perceived additional workload. However, there is interest in technologies that provide direct safety benefits, such as hazard alerts. This study illuminates the gap between the potential benefits of wearable technology and its current level of acceptance in the construction industry. It identifies the need for strategies to enhance worker acceptance and offers recommendations for future research.

A Study on the Real-Time Monitoring System of Wind Power in Jeju (제주지역 풍력발전량 실시간 감시 시스템 구축에 관한 연구)

  • Kim, Kyoung-Bo;Yang, Kyung-Bu;Park, Yun-Ho;Mun, Chang-Eun;Park, Jeong-Keun;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • A real-time monitoring system was developed for transfer, receive, backup and analysis of wind power data at three wind farm(Hang won, Hankyung and Sung san) in Jeju. For this monitoring system a communication system analysis, a collection of data and transmission module development, data base construction and data analysis and management module was developed, respectively. These modules deal with mechanical, electrical and environmental problem. Especially, time series graphic is supported by the data analysis and management module automatically. The time series graphic make easier to raw data analysis. Also, the real-time monitoring system is connected with wind power forecasting system through internet web for data transfer to wind power forecasting system's data base.

Versatile robotic platform for structural health monitoring and surveillance

  • Esser, Brian;Huston, Dryver R.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.325-338
    • /
    • 2005
  • Utilizing robotic based reconfigurable nodal structural health monitoring systems has many advantages over static or human positioned sensor systems. However, creating a robot capable of traversing a variety of civil infrastructures is a difficult task, as these structures each have unique features and characteristics posing a variety of challenges to the robot design. This paper outlines the design and implementation of a novel robotic platform for deployment on ferromagnetic structures as an enabling structural health monitoring technology. The key feature of this design is the utilization of an attachment device which is an advancement of the common magnetic base found in the machine tool industry. By mechanizing this switchable magnetic circuit and redesigning it for light weight and compactness, it becomes an extremely efficient and robust means of attachment for use in various robotic and structural health monitoring applications. The ability to engage and disengage the magnet as needed, the very low power required to do so, the variety of applicable geometric configurations, and the ability to hold indefinitely once engaged make this device ideally suited for numerous robotic and distributed sensor network applications. Presented here are examples of the mechanized variable force magnets, as well as a prototype robot which has been successfully deployed on a large construction site. Also presented are other applications and future directions of this technology.

Development of an Enhanced Risk Management System for Construction Defect Control in Industrial Plants

  • Kihun Song
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1313-1313
    • /
    • 2024
  • This paper proposes the development of an advanced Risk Management System (RMS) using Risk-Based Methodologies (RBM) specifically tailored for addressing construction defects in industrial plants. Urbanization and industrialization demand robust frameworks to handle the complexities and safety concerns in construction projects. Traditional risk management often overlooks critical aspects such as persistent construction defects. This paper discusses the development of an innovative Risk Management System (RMS) that integrates Risk-Based Methodologies (RBM) specifically for construction defect mitigation in industrial settings. The study centers around the implementation of Risk-Based Inspection (RBI) techniques, tailored to enhance traditional risk management systems. This includes developing a specialized risk assessment tool alongside an online management platform, designed to provide continuous monitoring and comprehensive management of construction risks. The proposed system-RBE-i (Risk-Based Execution for Installation)-focuses on identifying, evaluating, and mitigating risks effectively, utilizing a systematic approach that integrates seamlessly into existing construction workflows. The RBE-i system's core lies in its ability to conduct thorough risk analyses and real-time data provision. It uses digital technologies to improve communication, operational efficiency, and decision-making processes across construction projects. By applying these methodologies, the system enhances safety and ensures more efficient project execution by preemptively identifying potential risks and addressing them promptly. Field applications of RBE-i have demonstrated its effectiveness in significantly reducing construction defects, thus validating its potential as a transformative tool in construction risk management. The system sets new industry standards by shifting from reactive to proactive risk management practices, ultimately leading to safer, more reliable, and cost-effective construction operations. In conclusion, the RMS developed through this study not only addresses the pressing needs of construction risk management but also proposes a paradigm shift towards more proactive, structured, and technology-driven practices. The successful integration of the RBE-i system across various pilot projects illustrates its significant potential to improve overall project outcomes, making it an invaluable addition to the field of construction management.

Development of Monitoring System for Interconnection of Distributed Generation with Power Grid (분산전원 계통 연계를 위한 모니터링 시스템의 개발)

  • Oh, Sung-Nam;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.714-716
    • /
    • 2004
  • Owing to the environmental problems as well as increasing energy prices and power plant construction costs, many researches have been made for the safe operation of distributed generations. In order to be more popularly used in parallel with the distribution network, the distributed generation and its correlation with the power system should be exactly monitored at any time. This paper presents a monitoring system which displays the important states of the distributed generation in operation and stores various measurements of the system. The proposed system constructs a data-base for developing algorithms against any faults of the interconnected system, and monitors efficiently at any place with the communication network function.

  • PDF

Construction of a Pilot Headbox System and Pressure Monitoring Apparatus for the Development of High Speed Hydraulic Headboxes

  • Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.37-45
    • /
    • 2003
  • To investigate the influence of the design and operating parameters of the headbox on hydrodynamics, a pilot headbox system and pressure monitoring apparatus were constructed. The pilot headbox system consisted of a circulating water reservoir, centrifugal pump, distributor, turbulence generator and slice. The distributor was designed to function as a pressure attenuator. Flow rate to the headbox and MD and CD velocity profiles in the slice zone were monitored using an ultrasonic flowmeter and Pitot tubes, respectively. As the distance from the step diffusor increased, evener CD velocity profile was observed. Wall effect increased with the increase of the velocity. Flow stability in the headbox was evaluated by injecting a dye at the outlet of the distributor. Application of theoretical analysis based on CFD in designing headboxes is briefly discussed.

Cutting process monitoring system development for E-manufacturing (E-manufacturing을 위한 가공공정 모니터링 시스템 개발)

  • 신봉철;윤길상;최진화;김동우;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.30-35
    • /
    • 2003
  • Recently, with the rapid growth of information technology, many studies have been performed to implement web-based manufacturing system. Such technologies are expected to meet the need of many manufacturing industries those want to adopt E-manufacturing system for the construction of globalization, agility, digitalization to cope with the rapid changing market requirements. In this research, areal-time web-based machine tool and machining process monitoring system is developed as a first step fur implementing I-manufacturing system. In this system, main spindle motor current and feed current are measured using hall sensors. And the relationship between the cutting force and the spindle motor RMS current at various spindle rotational speed is obtained. Also, a rule-based expert system is developed in order to monitor the machining process effectively. Finally, developed system is applied to real machining process to verify the effectiveness.

  • PDF

Construction Methods Review of Freeform Envelope Using 3D Scanning (3D SCANNING을 활용한 비정형 외장재의 시공 공법 검토)

  • Kim, Sung-Jin;Park, Sung-Jin;Choi, Young-Jae;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.100-101
    • /
    • 2014
  • The generation of 3D models for freeform buildings is an important task while continuous monitoring of the related spatial information at different time phases. Realistic models of freeform building have to provide high geometric accuracy and detail at an effective data size.(Al-kheder, S. 2008) The efficiency of this image-based technique has been increased considerably by the development of digital technologies. Furthermore, 3D data collection based on laser scanning has become an high quality 3D models for construction site. Therefore, in this research, we have an effort to review construction methods to make freeform envelope of building using 3D scanning technology.

  • PDF