• Title/Summary/Keyword: in-circuit test

Search Result 1,629, Processing Time 0.027 seconds

Switching Surge Flashover Characteristics of 765 kV Transmission Towers (765 kV 송전철탑 개폐섬락 특성)

  • Shim, J.W.;Chang, S.C.;Kwak, J.S.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.276-278
    • /
    • 1996
  • The breakdown Process in large gaps is greatly influenced by the gap geometry. Therefor full scale test are essential for the economical and reliable air insulation design. For switching surge design of 765 kV double circuit transmission line KEPRI is carrying the verifying tests using impulse voltage generator at Gochang test site. In this paper, the intermediate results of verifying tests are presented and the switching surge design criteria of 765 kV transmission tower flashover paths are discussed.

  • PDF

Parameter Design and Power Flow Control of Energy Recovery Power Accumulator Battery Pack Testing System

  • Bo, Long;Chong, Kil To
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.787-798
    • /
    • 2013
  • This paper proposes a special power circuit topology and its corresponding control strategy for an energy recovery power accumulator battery pack testing system (PABPTS), which is particularly used in electric vehicles. Firstly, operation principle and related parameter design for the system are illustrated. Secondly, control strategy of the composite power converter for PABPTS is analyzed in detail. The improved scheme includes a high accuracy charge and discharge current closed loop. active power reference for the grid-side inverter is provided by the result of multiplication between battery pack terminal voltage and test current. Simulation and experimental results demonstrate that the proposed scheme could not only satisfy the requirements for PABPTS with wide-range current test, but also could recover the discharging energy to the power grid with high efficiency.

A Study on Improvement of Storage Safety through Quality improvement of Torpedo Propulsion Battery (어뢰 추진전지 품질개선을 통한 저장안정성 향상에 관한 연구)

  • Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.291-298
    • /
    • 2019
  • We describe the improvement of insulation performance and the prevention of electrolyte leakage in a single cell in order to prevent the fuming phenomenon caused by leakage of electrolyte in a lithium secondary battery in a submerged weapon (torpedo) operated in Korea. A torpedo using lithium secondary battery as a main power source (propulsion battery) can induce the heat and fuming phenomenon, which makes it inconvenient for naval equipment operation in Korea. In the simulation test, the electrolyte of some battery cells leaked in the battery pack unit, leading to a short circuit between the main power circuit and the terminal tab of the high voltage part. We analyzed the characteristics and mechanism of the lithium secondary battery during this heat generation and fuming phenomenon. In order to prevent leakage of the electrolyte in the lithium secondary battery, the design was improved via fundamental (terminal tap enhancement) and complementary (insulation block selection and installation) measures. Comparison of the performance test before and after the improvement showed that the tensile strength of the tap terminal was improved about 2 times and the withstand voltage characteristic was improved. The application of quality improvement measures resulted in no fuming even after more than 3 years of field operation. This result is expected to improve the operation and storage stability of the torpedo propulsion cell.

Test Pattern Generation for Asynchronous Sequential Circuits Operating in Fundamental Mode (기본 모드에서 동작하는 비동기 순차 회로의 시험 벡터 생성)

  • 조경연;이재훈;민형복
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.38-48
    • /
    • 1998
  • Generating test patterns for asynchronous sequential circuits remains to be a very difficult problem. There are few algorithms for this problem, and previous works cut feedback loops, and insert synchronous flip-flops in the feedback loops during ATPG. The conventional algorithms are similar to the algorithms for synchronous sequential circuits. This means that the conventional algorithms generate test patterns by modeling asynchronous sequential circuits as synchronous sequential circuits. So, test patterns generated by those algorithms nay not detect target faults when the test patterns are applied to the asynchronous sequential circuit under test. In this paper an algorithm is presented to generate test patterns for asynchronous sequential circuits. Test patterns generated by the algorithm can detect target faults for asynchronous sequential circuits with the minimal possibility of critical race problem and oscillation. And it is guaranteed that the test patterns generated by the algorithm will detect target faults.

  • PDF

A Comparison Study of Input ESD Protection schemes Utilizing Thyristor and Diode Devices (싸이리스터와 다이오드 소자를 이용하는 입력 ESD 보호방식의 비교 연구)

  • Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.75-87
    • /
    • 2010
  • For two input-protection schemes suitable for RF ICs utilizing the thyristor and diode protection devices, which can be fabricated in standard CMOS processes, we attempt an in-depth comparison on HBM ESD robustness in terms of lattice heating inside protection devices and peak voltages developed across gate oxides in input buffers, based on DC, mixed-mode transient, and AC analyses utilizing a 2-dimensional device simulator. For this purpose, we construct an equivalent circuit for an input HBM test environment of a CMOS chip equipped with the input ESD protection circuits, which allows mixed-mode transient simulations for various HBM test modes. By executing mixed-mode simulations including up to six active protection devices in a circuit, we attempt a detailed analysis on the problems, which can occur in real tests. In the procedure, we suggest to a recipe to ease the bipolar trigger in the protection devices and figure out that oxide failure in internal circuits is determined by the junction breakdown voltage of the NMOS structure residing in the protection devices. We explain the characteristic differences of two protection schemes as an input ESD protection circuit for RF ICs, and suggest valuable guidelines relating design of the protection devices and circuits.

Optimum Parameter Design for Defibrillator (제세동기 최적 파라미터 설계)

  • Yoon, H.Y.;Ko, H.W.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.245-251
    • /
    • 1997
  • In designing defibrillator, several parameters such as patient's transthoracic impedance, output energy level, peak current, and time duration of current waveform must be considered to generate optimum electrical shocks on the heart. Patient's transthoracic impendence depends on the physical and health condition of patient. In this study, before the development of a defibrillator, the range of above parameters value as circuit elements was determined to derive optimal waveform by predicting and analyzing the performance of designed circuit by means of simulation with the software, P-Spice. The efficiency of parameter design was verified through the performance test with the developed defibrillator.

  • PDF

A Study on the Performance Test and Manufacture of the Dielectric Sensor for the Cure Monitoring of the High Temperature Composites (고온 복합재료의 경화 모니터링을 위한 고온 유전센서의 제작 및 성능평가에 관한 연구)

  • 김일영;최진호;이대길
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2001
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the Wheatstone bridge type for measuring the dissipation factor during cure of thermsetting resin matrix composite materials was designed and manufactured. Also, the dielectric sensor for the cure monitoring of high temperature cure composites was developed and tested. The residual thermal stresses of the dielectric sensor during high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature were evaluated. The on-line cure monitoring of the BMI(Bismaleimide) resin was performed using the developed Wheatstone bridge type circuit and the high-temperature dielectric sensor.

  • PDF

The Development of Pulverized Coal(PC) Flow-Meter using Capacitance (정전용량을 이용한 미분탄 유량계의 개발)

  • Gim, Jae-Hyeon;Lee, Yong-Sik;Hwang, Keon-Ho;Jeong, Sung-Won;Yeo, Jun-Ho;So, Ji-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2008
  • In this papar, the flow meter system for pulverized coal is developed for the pulverizer-burner system of the boiler or the blast furnace. The sensor of the system a lied the capacitance with a pair of electrode on the outer wall of the electric insulator pipe. The circuit is designed for the measurement of the granule flow density combining as a measuring electrode and a reference. In order to measure granule-flow density, the calibration curve between the weight measured from loadcell and the voltage from the circuit is created. It is verified that the flow meter system has reliability and accuracy using on-line test.

Design Circuit Parameter Estimation of Impulse Generator and its application to 10/350${\mu}s$ Lightning Impulse Current Generator (임펄스 발생기의 회로 설계 파라미터 예측계산과 10/350${\mu}s$ 뇌임펄스 전류발생기 적용)

  • Lee, Jae-Bok;Shenderey, S. V.;Chang, Sug-Hun;Myung, Sung-Ho;Cho, Yuen-Gue
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1822-1828
    • /
    • 2008
  • This paper presents design parameter calculation methodology and its realization to construction for the 10/350${\mu}s$ lightning impulse current generator(ICG) modelled as double exponential function waveform with characteristic parameters ${\alpha},{\beta}$. Matlab internal function, "fzero" was applied to find ${\lambda}={\alpha}/{\beta}$ which is solution of nonlinear equation linearly related with two wave parameter $T_1$ and $T_2$. The calculation results for 10/350${\mu}s$ lightning impulse current show very good accuracy with error less 0.03%. Two type of 10/350${\mu}s$ ICGs based on the calculated design circuit parameters were fabricated by considering the load variation. One is applicable to the MOV based Surge protective device(SPD) for less 15 kA and the other is to test small resistive devices such as spark gap arrester and bonding device with maximum current capability 30 kA. The tested waveforms show error within 10% in comparison with the designed estimation and the waveform tolerance recommended in the IEC 61643-1 and IEC 60060-1.

Development of Electronic Identification Unit Using RF (RF를 이용한 전자 개체 인식 장치 개발)

  • 조성인;류관희;안광재;김유용;유윤관
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.459-466
    • /
    • 2002
  • In Korea, a need of automatic dairy farm management system has been increased to lower production cost and to strengthen international competition. However, the present management system was mostly relied on foreign technologies and caused some problems in post management and after-sales services. Therefore, though there is a problem of price and quality at present, domestic technologies of the management system should be developed for the long run. This study was conducted to develop an electronic identification unit for an automatic dairy farm management system. The developed system was consisted of a tag, a reader, a switching circuit, and a personal computer. The tag attachable to each individual cow was developed to transmit individual radio frequency(RF) code into the air with modulation of ASK(amplitude shift keying). And the switching circuit was added to avoid confusion on reception and transmittance. The reader attached to a feeding device was developed to transmit activating signal periodically and to identify code of the individual tag when the tag was approached to the device. The reader was consisted of an active filter, a detecter, a comparator and a microcontroller. The test result was feasible enough to apply it for the automatic farm management system and the identified maximum distance was about 37cm.