• Title/Summary/Keyword: in-circuit test

Search Result 1,629, Processing Time 0.028 seconds

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.

A design of BIST/BICS circuits for detection of fault and defect and their locations in VLSI memories (고집적 메모리의 고장 및 결함 위치검출 가능한 BIST/BICS 회로의 설계)

  • 김대익;배성환;전병실
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2123-2135
    • /
    • 1997
  • In this paepr, we consider resistive shorts on drain-source, drain-gate, and gate-source as well as opens in MOSFETs included in typical memory cell of VLSI SRAM. Behavior of memeory is observed by analyzing voltage at storage nodes of memeory and IDDQ(quiescent power supply current) through PSPICE simulation. Using this behavioral analysis, an effective testing algorithm of complexity O(N) which can be applied to both functional testing and IDDQ testing simultaeously is proposed. Built-In Self Test(BIST) circuit which detects faults in memories and Built-In Current Sensor(BICS) which monitors the power supply bus for abnormalities in quescent current are developed and imprlemented to improve the quality and efficiency of testing. Implemented BIST and BICS circuits can detect locations of faults and defects in order to repair faulty memories.

  • PDF

An Experimental Study on the Minimum Ignition Energy in Low Voltage Spark Discharge by Electrode Material (방전전극 재질과 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be the explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, powder filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy; this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Electrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type(International Electro-technical Commission) spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of electrode make-and-break speed.

Development of UHF Band Tag Antenna using Radio Frequency Identification Multipurpose Complex Card (RFID 다기능 복합 카드용 UHF 대역 소형 태그 안테나 개발)

  • Byun, Jong-Hun;Sung, Bong-Geun;Choi, Eun-Jung;Ju, Dae-Geun;Yoo, Dae-Won;Cho, Byung-Lok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1452-1458
    • /
    • 2009
  • In this paper, Our proposed Multipurpose Complex Card UHF band RFID small-size Tag antenna. Multi purpose Complex Card UHF band RFID small-size Tag antenna that is to minimize the low efficiency of RFID Tag Read Range that generates space limitation and a conductor surrounded by inducing fingerpring system with dual(HF, UHF) Card is presented. Our proposed UHF band RFID small-size Tag antenna is for the Multipurpose Complex Card that is mounted on the fingerpring system as well as the HF Tag. It also enables to minimize and facilitates Tag chip matching by adjusting Tapered, Meander line and Loop structure. Given the card substance properties and periphery circuit, the proposed small-size Tag antenna, in this report, is designed with PET film with size of $50{\times}15mm^2$. The RFID small-size Tag method for measurements is used by EPCglobal Static Test instrument in Anechoic Chamber, which is tested with dual Card, within the car and in wallet. It is found that Read Range is 3.8m from the EPCglobal Static Test, Maximum Read Range within the car from the field test results in 7.6m. Proposed Tag antenna is will be used in the parking control security system.

Air Density Measurement in a Narrow Test Section Using a Laser Absorption Spectroscopy (레이저 흡수 분광법을 사용한 좁은 시험 구간 내 공기 밀도 측정)

  • Shim, Hanseul;Jung, Sion;Kim, Gyeongrok;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.893-900
    • /
    • 2021
  • In this study, air density in a narrow test section is measured using a laser absorption spectroscopy system that detects oxygen absorption lines. An absorption line pair at 13156.28 and 13156.62 cm-1 are detected. A gas chamber with a height of 40 mm is used as a narrow test section. A triangular spiral-shaped laser path is applied in the gas chamber to amplify absorption strength by extending laser beam path length. A well-known logarithm amplifier and a secondary amplifier are used to electrically amplify absorption signal. An AC-coupling is applied after the logarithm amplifier for signal saturation prevention and noise suppression. Procedure of calculating spectral absorbance from output signal is introduced considering the logarithm amplifier circuit configuration. Air density is determined by fitting the theoretically calculated spectral absorbance to the measured spectral absorbance. Test conditions with room temperature and a pressure range of 10~100 kPa are made in a gas chamber using a Bourdon pressure gauge. It is confirmed that air density in a narrow test section can be measured within a 16 % error through absorption signal amplification using a triangular spiral-shaped beam path and a logarithm amplifier.

Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate (Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향)

  • Min, Kyoung-Jin;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.

Evaluation Methods and Design for Bioartificial Liver Based on Perfusion Model

  • Park Yueng Guen;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • A bioartificial liver (BAL) is a medical device entrapping living hepatocytes or immortalized cells derived from hepatocytes. Many efforts have already been made to maintain the functions of the hepatocytes in a BAL device over a long term. However, there is still some uncertainty as to their efficacy. and their limitations are unclear. Therefore, it is important to quantitatively evaluate the metabolic functions of a BAL. In previous studies on in vitro BAL devices, two test methods, an initial bolus loading and constant-rate infusion plus initial bolus loading, were theoretically carried out to obtain physiologic data on drugs. However, in the current study, the same two methods were used as a perfusion model and derived the same clearance characterized by an interrelationship between the perfusate flow rate and intrinsic clearance. The interrelationship indicated that the CL increased with an increasing perfusate flow rate and approached its maximum value, i.e. intrinsic clearance. In addition, to set up an in vivo BAL system, the toxic plateau levels in the BAL system were calculated for both series and parallel circuit models. The series model had a lower plateau level than the parellel model. The difference in the toxic plateau levels between the parallel and series models increased with an increasing number of BAL cartridges.

Effect of Potassium Permanganate on Corrosion Behavior of Magnesium Alloy Prepared by Micro-Arc Oxidation (마이크로 아크 산화처리된 마그네슘 합금의 부식특성에 미치는 과망간산칼륨의 영향)

  • Ko, Young Gun;Lee, Kang Min;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.724-729
    • /
    • 2010
  • The effect of potassium permanganate ($KMnO_4$) in an electrolyte on the corrosion performance of magnesium alloy coated by micro-arc oxidation (MAO) has been investigated in this study. For this purpose, MAO coating was carried out on the present sample under AC condition in an alkaline silicate electrolyte with and without $KMnO_4$. Irrespective of the addition of $KMnO_4$, it was found from structural observation that the ceramic coating layers consisted of inner and outer layers. In the sample processed in the electrolyte with $KMnO_4$, the outer layer became dense and even contained a number of $Mn_2O_3$ atoms, resulting in high corrosion resistance. Based on the results of a potentiodynamic polarization test, it was confirmed that the coating layer formed in the electrolyte with $KMnO_4$exhibited better corrosion resistance than that without $KMnO_4$. The high corrosion resistance of the MAO-treated magnesium alloy was explained in relation to the equivalent circuit model.

Effect of Applied Voltage Bias on Electrochemical Migration in Eutectic SnPb Solder Alloy

  • Lee, Shin-Bok;Jung, Ja-Young;Yoo, Young-Ran;Park, Young-Bae;Kim, Young-Sik;Joo, Young-Chang
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.282-285
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature / humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the electrochemical migration. Many kinds of metal (Cu, Ag, SnPb, Sn etc) using in electronic packages are failed by ECM. Eutectic SnPb which is used in various electronic packaging structures, that is, printed circuit boards, plastic-encapsulated packages, organic display panels, and tape chip carriers, chip-on-films etc. And the material for soldering (eutectic SnPb) using in electronic package easily makes insulation failure by ECM. In real PCB system, not only metals but also many chemical species are included. And these chemical species act as resources of contamination. Model test systems were developed to characterize the migration phenomena without contamination effect. The serpentine-shape pattern was developed for analyzing relationship of applied voltage bias and failure lifetime by the temperature / humidity biased(THB) test.

A Study on the Effect of Metallic Fillers and Plastic for Ionic Migration (이온마이그레이션에 대한 플라스틱과 금속첨가제의 영향 연구)

  • Jeon, Sang Soo;Kim, Ji Jung;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.30-34
    • /
    • 2021
  • Electrical failures and reliability problems of electronic components by ionic migration between adjacent device terminals have become an issue in automotive electronics. Especially unlike galvanic corrosion, ionic migration is occurred at high temperature and high humidity under applied electric field condition. Until now, although extensive studies of the ionic migrations dealing with PCBs, electrodes, and solders were reported, there is no study on the effect of insulation polymers and metallic fillers for ionic migration. In this research, therefore, ionic migration induced by the types and contents of polymers and metallic fillers, and variety conditions of temperature, humidity, and applied voltage was studied in detail. Ester and amide types of liquid crystal polymer (LCP) and poly (phthalamide) (PPA) were used as base polymers, respectively and compounded with the metallic fillers of Copper iodide (CuI), Zinc stearate (Zn-st), or Calcium stearate (Ca-st) in various compositions. The compounding polymers were fabricated in IPC-B-24 of SIR test coupon according to ISO 9455-17 with Cu electrodes for ionic migration test. While there is no change in LCP-based samples, ionic migration in PPA compounding sample with a high water absorption property was accelerated in the presence of 0.25 wt% or above of CuI at the environmental conditions of 85℃, 85% RH and 48V. The dendritic short-circuit growth of Cu caused by ionic migration between the electrodes on the surface of compounded polymers was systematically observed and analyzed by using optical microscopy and SEM (EDX).