• Title/Summary/Keyword: in-cabinet response spectrum

Search Result 11, Processing Time 0.022 seconds

A PROCEDURE FOR GENERATING IN-CABINET RESPONSE SPECTRA BASED ON STATE-SPACE MODEL IDENTIFICATION BY IMPACT TESTING

  • Cho, Sung-Gook;Cui, Jintao;Kim, Doo-Kie
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.573-582
    • /
    • 2011
  • The in-cabinet response spectrum is used to define the input motion in the seismic qualification of instruments and devices mounted inside an electrical cabinet. This paper presents a procedure for generating the in-cabinet response spectrum for electrical equipment based on in-situ testing by an impact hammer. The proposed procedure includes an algorithm to build the relationship between the impact forces and the measured acceleration responses of cabinet structures by estimating the state-space model. This model is used to predict seismic responses to the equivalent earthquake forces. Three types of structural model are analyzed for numerical verification of the proposed method. A comparison of predicted and simulated response spectra shows good convergence, demonstrating the potential of the proposed method to predict the response spectra for real cabinet structures using vibration tests. The presented procedure eliminates the uncertainty associated with constructing an analytical model of the electrical cabinet, which has complex mass distribution and stiffness.

Rocking Stiffness of Electrical Cabinet for In-Cabinet Response Spectrum (캐비닛내부응답스펙트럼을 위한 전기캐비닛 전도강성)

  • Chung, Yon Ha;Hong, Kee-Jeung;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Electrical instruments and devices contained in cabinets for controlling nuclear power plants require seismic qualification; likewise, in-cabinet response spectrum (ICRS) is necessary. Gupta et al. (1999) suggested the Ritz method, where rocking, frame bending, and plate bending behaviors of cabinets are considered, as a method for determining ICRS. This research proposes a method to determine the rocking stiffness of cabinets, which represents its rocking behavior. The cabinet is fixed on mounting frames and is connected to the base concrete by anchors. When horizontal excitation is applied to the cabinet, the mounting frames at anchors are locally deformed, the mounting frames are bent, and then rocking in the cabinet becomes evident. A method to determine equivalent vertical spring stiffness representing the local deformation of the mounting frames at anchors is then proposed. Subsequently, the rocking stiffness of this mounting frame is calculated upon assumption of the mounting frame as an indeterminate beam.

Formulation and Verification on Ritz Method for In-Cabinet Response Spectrum (캐비닛내부응답스펙트럼 산정을 위한 리츠방법의 정식화 및 단순예제를 통한 검증)

  • Kim, Ki Hyun;Hong, Kee-Jeung;Cho, Sung Gook;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.279-288
    • /
    • 2019
  • Safety-related cabinets and their electrical parts, such as relays and switches in nuclear power plants, should maintain continuous functioning, as well as structural safety according to the nuclear regulatory guidelines. Generally, an electrical part is qualified if its functioning is maintained without abnormality during excitement by motion compatible with the test response spectrum, which is larger than its in-cabinet response spectrum (ICRS). ICRS can be determined by shake-table test or dynamic analysis. Since existing cabinets in use can hardly be stopped and moved, dynamic analysis is preferred over shake-table test in determining ICRS. The simple method, suggested by the Electric Power Research Institute (EPRI) to determine ICRS, yields conservative or non-conservative results from time to time. In order to determine that the ICRS is better than EPRI method in a simple way, Ritz method considering global and local plate behaviors was suggested by Gupta et al. In this paper, the Ritz method is modified in order to consider the rocking and frame behaviors simultaneously, and it is applied to a simple numerical example for verification. ICRS is determined by Ritz method and compared with the results by finite element method (FEM). Based on this numerical example, recommendations for using Ritz method are suggested.

In-Cabinet Response Spectrum Generation Using Frequency Domain Analysis Method (진동수영역해석법을 이용한 캐비닛내부응답스펙트럼 생성 기법)

  • Cho, Sung Gook;So, Gihwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Seismic qualification of instruments and devices mounted on electrical cabinets in a nuclear power plant is performed in this study by means of the in-cabinet response spectrum (ICRS). A simple method and two rigorous methods are proposed in the EPRI NP-7146-SL guidelines for generating the ICRS. The simple method of EPRI can give unrealistic spectra that are excessively conservative in many cases. In the past, the time domain analysis (TDA) methods have been mostly used to analyze a structure. However, the TDA requires the generation of an artificial earthquake input motion compatible to the target response spectrum. The process of generating an artificial earthquake may involve a great deal of uncertainty. In addition, many time history analyses should be performed to increase the accuracy of the results. This study developed a numerical analysis program for generating the ICRS by frequency domain analysis (FDA) method. The developed program was validated by the numerical study. The ICRS calculated by FDA thoroughly matched with those obtained from TDA. This study then confirms that the method it proposes can simply and efficiently generate the ICRS compared to the time domain method.

In-Cabinet Response Spectrum Comparison of Battery Charger by Numerical Analysis and Shaking Table Test (수치해석 및 진동대 실험을 통한 충전기의 캐비닛내부응답스펙트럼(ICRS) 결과 비교)

  • Lee, Sangjin;Choi, In-Kil;Park, Dong-Uk;Eem, Seung-Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • The seismic capacity of electric cabinets in Nuclear Power Plants (NPPs) should be qualified before installation and be maintained during operation. However it can happen that identical devices cannnot be produced for replacement of devices mounted in electric cabinets. In case of when no In-Cabinet Response Spectrum (ICRS) is available for new devices, ICRS can be generated by using Finite Element Analysis (FEA). In this study we investigate structural response and ICRSs of battery charger which is supplied to NPPs. Test results on the battery charger are utilized in this study. The response is measured by accelerometers installed on the housing of the battery charger and local panels in the battery charger. Numerical analysis model is established based on resonant frequency search test results and validated by comparison with 2 types of earthquake testing results. ICRSs produced from the numerical model are compared with measured ICRSs in the seismic tests. Developed analysis model is a simple reduced model and anticipates ICRSs quite well as measured response in the tests overall despite of its structural limitation.

Dynamic Analysis and Structural Safety Evaluation of the Cabinet of a Reactor Safety System (원자로 보호계통 캐비닛의 동해석과 구조 안전성 평가)

  • Lee, Boo-Youn;Cho, Chung-Rae;Kim, Won-Jin;Jeong, Dong-Gwan;Shon, Jae-Youl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.131-140
    • /
    • 2005
  • Responses of the cabinet of the reactor safety system under seismic leadings are analyzed, its dynamic characteristics and structural reliability being evaluated. Analyzed natural frequencies are compared with those measured from a resonance test. Structural safety of the cabinet is evaluated in consideration of the required response spectrums of the operation-base and safe-shutdown earthquakes. Transient responses of the cabinet are analyzed with input ground acceleration measured during the seismic test, accelerations being extracted at the locations of the main internal parts. The transient responses are compared with those from the seismic test, favorable results being shown.

Seismic Qualification of Plant Protection System Cabinet for Nuclear Power Plant (원자력발전소 보호시스템 캐비넷의 내진검증)

  • 정명조;박근배;황원걸
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.148-155
    • /
    • 1992
  • A method to verify seismic qualification of the plant protection system cabinet for a nuclear power plant is presented. A finite element model of the cabinet is developed and correlated to the dynamic properties observed during in-situ vibration test of the actual structure. The results of the modal analysis provide insight into the fundamental dynamic properties of the structure. Techniques for verifying structural integrity and operability are exemplified by summarizing response spectrum and time history analyses of the structure.

  • PDF

Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests (충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측)

  • Cho, Sung-Gook;Joe, Yang-Hee;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.

A Shaking Table Test for an Re-evaluation of Seismic Fragility of Electrical Cabinet in NPP (원전 전기캐비넷의 지진취약도 재평가를 위한 진동대 실험)

  • Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2011
  • In this study, a seismic behavior of electrical cabinet system in Nuclear Power Plants(NPPs) was evaluated by the shaking table test. A 480V Motor Control Centers(MCCs) was selected for the shaking table test, and a real MCC cabinet for the Korea Nuclear Power Plant site was rented by manufactured company. For the shaking table tests, three kinds of seismic input motions were used, which were a US NRC Reg. guide 1.60 design spectrum, a UHS spectrum and PAB 165' floor response spectrum(FRS). Especially, the UHS input motion was selected for an evaluation of structural seismic amplification effects, three directional accelerations were measured at three points outside on the cabinet system and also that of the incabinet response amplification, accelerations were measure at two points which were mounted in electrical equipment such as relay. Seismic amplification effect is determined at the outside and inside of a cabinet as input seismic motion, and compared to the results which are calculated by analytical method based on NUREG/CR-5203.

Estimation of Excitation Force and Noise of Drum Washing Machine at Dehydration Condition using Phase Reference Spectrum (위상 기준 스펙트럼을 이용한 드럼 세탁기 탈수 행정시의 가진력 및 방사소음 예측)

  • Kim, Tae Hyeong;Jung, Byung Kyoo;Heo, So Jung;Jeong, Weui Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.617-623
    • /
    • 2013
  • Accurate prediction of the radiated noise is important to reduce the noise of the washing machine. It is also necessary to predict the excitation force accurately because excitation force can induce noise. In order to predict the excitation force acting on the washing machine, this paper conducts source identification method by use of phase reference spectrum. In this method, the transfer function between the cabinet and the motor through FEM and the measured response from the surface of the cabinet is used. The analysis of the radiation noise from the identified exciting force has been investigated. The comparison between the predicted SPL and the measured SPL at 1m apart from the front side of the washing machine showed good tendency.