• Title/Summary/Keyword: in vitro transfection

Search Result 142, Processing Time 0.036 seconds

Effect of Synthetic CaM and NFAT Oligodeoxynucleotide on MPP+-Stimulated Mesencephalic Neurons

  • Jihyun Park;Kyung Mi Jang
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.35-41
    • /
    • 2023
  • Background: Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis in Parkinson's disease (PD). Overexpression of αSYN significantly promote the Ca2+-Calmodulin (CaM) activity and subsequent nuclear translocation of nuclear factor of activated T cells (NFAT) transcription factor in dopaminergic neurons of midbrain. However, the exact role of Ca2+-CaM and NFAT in PD pathology is yet to be elucidated. Methods: We designed the CaM-NFAT-oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for NFAT transcription factor and CaM mRNA. Then, the effect of CaM-NFAT-ODN on 1-methyl-4-phenylpyridinium (MPP+)-mediated neurotoxicity was investigated in mimic PD model in vitro. Results: First, the expression of αSYN and CaM was strongly increased in substantia nigra (SN) of PD and the expression of tyrosine hydroxylase (TH) was strongly increased in control SN. Additionally, the expression of apoptosis marker proteins was strongly increased in SN of PD. Transfection of CaM-NFAT-ODN repressed CaM and pNFAT, the target genes of this ODN in rat embryo primary mesencephalic neurons. It also reduced ERK phosphorylation, a downstream target of these genes. These results demonstrated that CaM-NFAT-ODN operated successfully in rat embryo primary mesencephalic neurons. Transfection of CaM-NFAT-ODN repressed TH reduction, αSYN accumulation, and apoptosis by MPP+-induced neurotoxicity response through Ca2+ signaling and mitogen-activated protein kinases (MAPK) signaling. Conclusion: Synthetic CaM-NFAT-ODN has substantial therapeutic feasibility for the treatment of neurodegenerative diseases.

Optimal Condition for Sperm-mediated Gene Transfer by Liposome in Pigs

  • Kim, Tae-Shin;Yang, Cao;Lee, Young-Seung;Park, Soo-Bong;Park, Chun-Keun;Lee, Dong-Seok
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.81-87
    • /
    • 2008
  • Production of transgenic animals for studying specific gene has been limited due to a low efficiency, lack of skilled researchers and the need for expensive equipment. Currently, the boar spermatozoa as a vector to deliver exogenous DNA into the oocyte were used to improve the efficiency of transfection rate. In this study, we revealed that the optimal conditions for DNA uptake in spermatozoa by liposome were to 90 min of incubation, $17^{\circ}C$, $10^5$ spermatozoa, 4 ng/ml of exogenous DNA and 0.5% (v/v) liposome, without damage to fertility. In addition, the developmental rate to the blastocyst stage of embryo in control group was significantly higher than those embryos with exogenous DNA and liposome, whereas there were no significant differences in embryo development between the liposome and type of DNA. The transfection rates of embryo using treated spermatozoa with both liposome and circular DNA were higher than those using linear DNA. These findings raise the possibility thattreated spermatozoa with liposome/DNA complexes could be used in in vitro fertilization, and the exogenous DNA transferred into the oocytes. Taken together, we demonstrated that liposome a vector for the uptake of exogenous DNA in boar spermatozoa could improve the efficiency of sperm-mediated gene transfer in creating transgenic pig and the other domestic transgenic animals.

Biodistribution and Hemolysis Study of Terplex Gene Delivery System in Mice

  • Oh, Eun-Jung;Shim, Jin-young;Kim, Jin-Seok
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • Polymeric gene delivery system attracts profound attention as it shows less toxicity, versatility, and reasonable gene expression efficiency. Terplex system, a synthetic biopolymeric gene delivery system consisting of stearyl poly-L-lysine (stearyl-PLL) and low density lipoprotein (LDL) was evaluated for its body distribution of gene expression of exogenously administered pDNA after tail-vein injection in mice. Kidney and spleen are two major organs with highest gene expression, whereas liver and heart showed marginal gene expression among the organs examined. Hemolytic effect of the terplex system was evaluated using human red blood cells, where terplex system did not cause significant hemolysis at the concentrations above the experimental ranges, although unmodified PLL or stearyl-PLL without LDL did. Serum stability of terplex system against enzymatic degradation was also significantly enhanced, presumably due to the steric stabilization from the polymers. Based on these findings and along with its high in vitro transfection efficiency, terplex system could serve as a safe and efficient polymeric gene delivery system with many applications for the in vivo gene therapy.

Intravenous and Intra-arterial Delivery of Plasmid DNA/Cationic Lipiodol Emulsion Complexes

  • Chae, Min-Jung;Chung , Hes-Son;Kwon, Ick-Chan;Chung, Jin-Wook;Park, Jae-Hyung;Sohn, Young-Taek;Jeong, Seo-Young
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.226.3-227
    • /
    • 2003
  • A cationic lipid emulsion (o/w) containing lipiodol and 1, 2-dioleoyl-sn- glycero-3-trimethylammonium-propane (DOTAP) has been prepared as a gene delivery system. In order to increase the transfection efficiency of the lipiodol emulsion, 1 2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) and polyoxyethylene sorbitan monooleate (Tween 80) were incorporated as additional lipids. By including DOPE and Tween 80, the cationic emulsion became a more potent gene carrier under in vitro condition in the presence of serum, and under in vivo condition. (omitted)

  • PDF

Genetically Modified Human Embryonic Stem Cells Expressing Nurr1 and Their Differentiation into Tyrosine Hydroxylase Positive Cells in vitro.

  • Cho, Hwang-Yoon;Lee, Chang-Hyun;Kil, Kwang-Soo;Yoon, Ji-Yeon;Shin, Hyun-Ah;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, SePill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.104-104
    • /
    • 2003
  • As an effort to direct differentiation of human embryonic stem (hES, MB03) cells to dopamine-producing neuronal cells, Nurr1 was transfected using conventional transfection protocol into MB03 and examined the expression of tyrosine hydroylase (TH) after differentiation induced by retinoic acid (RA) and ascorbic acid (AA). Experimentally, cells were transfected with linearized Nurr1 cDNA in pcDNA3.1 (+)-hygovernight followed by selection in medium containing hygromycin-B (150 $\mu$/ml). Expression of Nurr1 mRNA was confirmed by RT-PCR and protein by immunocytochemistry in the drug resistant clones. In order to study the effect of Nurr1 protein on the differentiation pattern of ES cells, one of the positive clones (MBNr24) was allowed to form embryoid body (EB) for 2 days and were induced to differentiate for another 4 days using RA (1 $\mu M$) and AA (50 mM) (2-/4+ protocol) followed by selection in N2 medium for 10 or 20 days. After 10 days in N2 medium, cells immunoreactive to anti-GFAP, anti-TH, or anti-NF200 antibodies were 38.8%, 11%, and 20.5%, respectively. After 20 days in N2 medium, cells expressing GFAP, TH, or NF200 were 28%, 15% and 44.8%, respectively but approximately 9% of MB03 expressed TH protein when the cells were induced to differentiate using a similar prorocol, These results suggest that ectopic expression of Nurr1 enhances generation of TH+ cells as well as neuronal cells when hES cells were differentiated by 2-/4+ protocol.

  • PDF

Macrophage-secreted Exosomes Delivering miRNA-21 Inhibitor can Regulate BGC-823 Cell Proliferation

  • Wang, Jian-Jun;Wang, Ze-You;Chen, Rui;Xiong, Jing;Yao, Yong-Liang;Wu, Jian-Hong;Li, Guang-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4203-4209
    • /
    • 2015
  • Exosomes, membranous nanovesicles, naturally carry bio-macromolecules or miRNA and play impoetant roles in tumor pathogenesis. Here, we showed that macrophages cell-derived exosomes can function as vehicles to deliver exogenous miR-21 inhibitor into BGC-823 gastric cancer cells. Exosomes loaded with miR-21inhibitor significantly increased miR-21 levels in BGC-823, but miR-21inhibitor loaded in exosomes exerted an opposite effect. miRNA transfected with exosomes had less cellular toxicity to host cells compared to conventional transfection methods. The miR-21inhibitor loaded exosomes promoted the migration ability and reduced apoptosis of BGC-823 gastric cancer cells. These observations indicate that miR-21 acts as a tumor promoter by targeting the PDCD4 gene and preventing apoptosis of gastric cancer cells through inhibition of PDCD4 expression. Furthermore, exosome -mediated miR-21 inhibitor delivery resulted in functionally more efficient inhibition and less cellular toxicity compared to conventional transfection methods. Similar approaches could be useful in modification of target biomolecules in vitro and in vivo. These findings contribute to our understanding of the functions of miR-21 and exosomes as a carrier for therapy of gastric cancer.

Characterization of Linear Polymer-Dendrimer Block Copolymer/Plasmid DNA Complexes: Formation of Core-shell Type Nanoparticles with DNA and Application to Gene Delivery in Vitro

  • Choi, Joon-Sig;Choi, Young-Hun;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1025-1030
    • /
    • 2004
  • A hybrid linear polymer-dendrimer block copolymer, poly(ethylene glycol)-block-poly(L-lysine) dendrimer, was synthesized and introduced to form polyionic complexes with DNA. The copolymer formed core-shell type nanoparticles with plasmid DNA. From dynamic light scattering experiments, the mean diameter of the polyplexes was observed to be 154.4 nm. The complex showed much increased water solubility compared to poly(L-lysine). The plasmid DNA in polyplexes was efficiently protected from the enzymatic digestion of DNase I. The cytotoxicity and transfection efficiency for 293 cells was measured in comparison with poly(Llysine).

In vitro and in vivo transfection efficiency of a cationic lipid containing sodium cholate

  • Kim, Adele;Lee, Eun-Hye;Choi, Sung-Hee;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.425.3-426
    • /
    • 2002
  • Cationic lipids have been used as one of the major components for making most promising non-viral gene delivery systems. whereas sodium cholate. an edge activator has been used as a surfactant in making ultradeformable and ultraflexible liposomes called Transfersomes. Using both a cationic lipid, DOTAP and sodium cholate. a newly formulated ultradeformable cationic liposome has been prepared. The average particle size of this formulation was approximately 80nm. (omitted)

  • PDF

Anti-tumorigenic and Invasive Activity of Colon Cancer Cells Transfected with the Retroviral Vector Encoding Tissue Inhibitor of Metalloproteinase-2 (레트로바이러스를 이용한 Tissue Inhibitor of Metalloproteinase-2 유전자 발현이 대장암 세포의 전이 및 종양형성에 미치는 영향)

  • 오일웅;정자영;장석기;이수해;김연수;손여원
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) playa key role in tumor invasion and metastasis. As an inhibitor of MMP-2, TIMP-2 is known to block both the invasive and metastatic behavior of cancer cells, and decrease tumor growth activity. We performed this study to investigate the effects of TIMP-2 over-expression induced by retroviral mediated gene transfer in vitro and in vivo. The human colon cancer cell line SW480 was transfected with the retroviral vector encoding TIMP-2. The effects of TIMP-2 over-expression were analyzed by invasion assay and gelatinase activity test in colon cancer cells and tumorigencity in nude mice. In evaluation of the transfection efficiency of the retroviral vector encoding TIMP-2 in colon cancer cells, we confirmed up-regulation of TIMP-2 expression dependent on the time of cell culture. In addition, inhibition of MMP-2 expression in SW480/TIMP-2 was shown by gelatin zymography. In the in vitro invasion assay SW480/TIMP-2 inhibited the invasiveness on matrigel coated with collagen. To determine whether TIMP-2 can modulate in vivo tumorigenicity and metastasis, SW480/TIMP-2 cells were injected subcutaneously in nude mice. The tumor mass formation of SW480/TIMP-2 cells in nude mice was markedly decreased compared to nontransfected cancer cells. These results showed that colon cancer cells transfected with the retroviral vector encoding TIMP-2 inhibits the invasiveness in vitro and tumorigenicity in vivo.

Genetically Modified Human Embryonic Stem Cells Expressing Nurr1 and Their Differentiation into Tyrosine Hydroxylase Positive Cells In Vitro

  • Cho, Hwang-Yun;Lee, Chang-Hyun;Kim, Eun-Young;Lee, Won-Don;Park, Sepill;Lim, Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.272-272
    • /
    • 2004
  • The objective of this study is to test whether human embryonic stem cells expressing Nurr1 (Nurr1-transfected hES cells) could be expressed TH according to neuronal differentiation. As an effort to direct differentiation of hES (MB03 registered in NIH) cells to dopamine-producing neuronal cells, Nurr1 was transfected using conventional transfection protocol into MB03 cell and examined the expression of tyrosine hydroxylase (TH) after differentiation induced by retinoic acid (RA) and ascorbic acid (AA). (omitted)

  • PDF