• Title/Summary/Keyword: in vitro rumen fermentation

Search Result 255, Processing Time 0.026 seconds

Effects of Addition Levels of Coffee and Green Tea By-products Extract including Polyphenols on in vitro Rumen Fermentation and Methane Emission (폴리페놀을 다량 함유한 커피박 및 녹차박 추출물의 수준별 첨가가 반추위 발효 및 메탄 발생량에 미치는 영향)

  • Won, Miyoung;Ryu, Chae-Hwa;Bak, Hyeryeon;Chae, Byungho;Jang, Seung-Ho;Choi, Seung-Shin;Choi, Bong-Hwan;Lee, Sung-Soo;Lee, Jinwook;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.613-623
    • /
    • 2021
  • This study was conducted to investigate the effect of addition levels of coffee and green tea by products extract including polyphenols through hot water extraction on rumen fermentation. The treatment groups consisted of coffee extract (CO), green tea extract (GR) and mixed extract (MIX), and the addition level was 10 µL, 20 µL and 30 µL of three levels. The experiment consisted of a total of 10 experimental groups including the control group, and a full factorial design was used. The effect of polyphenol addition in coffee and green tea by-products was analyzed through main and interaction effect of statistical analysis. The total polyphenol content of the extracts was 106.15, 79.10 and 185.25 ㎍ GAE/g DM for coffee by-product, green tea by-product and mixture, respectively. Total gas production was significantly lower in the treatment groups than in the control (114.00 mL/gDM) (p<0.05). Methane emission tended to decrease as the polyphenol addition level increased. Moreover, the MIX showed the lowest methane emission when 30 µL was added (p<0.05). Volatile fatty acids showed a significant difference compared to the treatment group as a control (98.06 mM) (p<0.05), but there was no change according to the level of polyphenols. As a result of the main effect and interaction, it is thought that the effect on methane reduction and improvement of rumen fermentation in MIX20 can be expected. In a series of studies, the addition of 20 µL of a blended extract of coffee and green tea by-products is thought to reduce methane to levels that do not inhibit rumen fermentation.

Effects of Organic Acids on In Vitro Ruminal Fermentation Characteristics and Methane Emission (Organic acids 의 첨가가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Ok, Ji Un;Ha, Dong Uk;Lee, Shin Ja;Kim, Eun Tae;Lee, Sang Suk;Oh, Young Kyun;Kim, Kyoung Hoon;Lee, Sung Sill
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1324-1329
    • /
    • 2012
  • The objective of this study was to evaluate the in vitro effects of organic acids on methane emission and ruminal fermentation characteristics. We expected our methodology to result in a decrease of methanogens attached to the surface of rumen ciliate protozoa by addition of organic acids and in particular a decrease in methane emission. A fistulated Holstein cow of 650 kg body weight was used as a donor of rumen fluid. Organic acids (aspartic acid, fumaric acid, lactic acid, malic acid, and succinic acid) known to be propionate enhancers were added to an in vitro fermentation system and incubated with rumen fluid. The microbial population, including bacteria, protozoa, and fungi, were enumerated, and gas production, including methane and fermentation characteristics, were observed in vitro. Organic acids appeared to affect the rumen protozoan community. The rumen protozoal popuation decreased with the addition of aspartic acid, fumaric acid, lactic acid, and malic acid. In particular, the methane emission was reduced by addition of lactic acid. The concentration of propionate with all organic acids that were added appeared to be higher than that of the control at 12 h incubation. Addition of organic acids significantly affected rumen bacteria and microbial growth. The bacteria in added fumaric acid and malic acid was significantly higher (p<0.05) and protozoa was significantly lower (p<0.05) than that of the control. Microbial growth with the addition of organic acids was greater than the control after 48 h incubation.

Reduce the Energy Loss in Ruminant; Using Raphanus Sativus Extracts to Mitigate Methane Emission (반추동물의 에너지 손실을 줄이기 위한 연구; 무 추출물을 이용한 메탄 손실 억제)

  • Lee, Shin-Ja;Choi, You-Young;Lee, Su-Kyung;Lee, Il-Dong;Eom, Jun-Sik;Kim, Hyun-Sang;Kim, Do-Hyung;Lee, Sung-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.917-930
    • /
    • 2017
  • This study was conducted to evaluate Raphanus sativus extracts to methane reduction in rumen. Five different levels of R. sativus extracts were used to investigate the most effective dosing level for the decrease of methane production in the rumen. The rumen fluid was collected from a cannulated one Hanwoo cow ($BW=450{\pm}30kg$) consuming 600 g/kg timothy and 400 g/kg concentrate. On fermentation day, rumen fluid was collected at 2 hr postfeeding R. sativus extracts was dosed to achieve final concentration of 0, 1, 3, 5, 7, and 9% respectively, to fermentation bottles containing the mixture of rumen fluid and McDougall's buffer and 300 mg of timothy was added as a substrate. The fermentation was conducted for 3, 6, 9, 12, 24, 48 and 72 hr incubation time at $39^{\circ}C$ with shaking. In vitro ruminal pH values were measured normal range for ruminal fermentation. Dry matter disappearance was significantly higher (p<0.05) at 3 hr incubation time 1, 3 and 5% doses than that of control. The highest methane reduction was observed in 12 hr incubation time 5, 7 and 9%. The carbon dioxide emission was also significantly (p<0.05) lower than that of control at 12 hr incubation time 5, 7 and 9%. The total volatile fatty acid was no significant difference between control and all doses level at 12 and 24 hr incubation time. At 24 hr incubation time, the result of real-time PCR were indicated that M. archea was significantly lower (p<0.05) at all doses level comparing to that of control. In conclusion, R. sativus extracts were significantly decreased methane emission. R. sativus extracts were significantly lower (p<0.05) than that of control at 12 hr incubation time 5, 7 and 9% and no adversely effect in rumen pH, dry matter disappearance and total VFA.

Effects of Inoculant Application Level on Chemical Compositions of Fermented Chestnut Meal and Its Rumen Fermentation Indices (밤 발효사료 제조과정에서 미생물 첨가수준이 영양소 함량과 반추위 내 발효특성에 미치는 영향)

  • Kim, Dong-Hyeon;Joo, Young-Ho;Lee, Hyuk-Jun;Lee, Seong-Shin;Paradhipta, Dimas H.V.;Choi, Nag-Jin;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.333-340
    • /
    • 2018
  • This study aimed to estimate the effect of inoculant application level on chemical composition and bacterial count of fermented chestnut meal (FCM), and its rumen fermentation characteristics. The inoculant contained Lactobacillus acidophilus ($1.2{\times}10^{10}cfu/g$), Bacillus subtilis ($2.1{\times}10^{10}cfu/g$), and Saccharomyces cerevisiae ($2.3{\times}10^{10}cfu/g$). The chestnut meal mixed with molasses, double distilled water, and inoculant at 1 kg, 3 g, 480 mL, and 20 mL ratio for the basal chestnut meal diet. The double distilled water from basal chestnut meal diet was substituted with bacterial inoculant at a level of 0 (Control), 20 (Medium), and 40 mL (High) in the experimental diets. The mixed experimental diets were incubated at $39^{\circ}C$ for 7, 14, and 21 days, respectively. On 7 days of FCM incubation, the contents of crude protein (CP) (quadratic, P=0.043) and neutral detergent fiber (quadratic, P=0.071) decreased by increases of inoculant application levels, whereas bacterial count (quadratic, P=0.065) and rumen $NH_3-N$ (linear, P=0.063) increased. By increases of inoculant application levels on 14 days of FCM incubation, the increases were found on dry matter (DM) (quadratic, P=0.085), CP (quadratic, P=0.059), acid detergent fiber (quadratic, P=0.056), in vitro DM digestibility (linear, P=0.002), rumen total volatile fatty acid (VFA) (linear, P=0.057), and rumen iso-butyrate (linear, P=0.054). However, the decreases were found on bacterial count (linear, P=0.002), propionate (linear, P=0.099), and butyrate (quadratic, P=0.082). On 21 days of FCM incubation, in vitro DM digestibility (linear, P=0.002) and total VFA (linear, P=0.001) increased by increases of inoculant application levels, whereas the contents of CP (quadratic, P=0.034) and neutral detergent fiber (quadratic, P=0.047) decreased. These results indicate that the FCM with a medium level of inoculant application and 14 of fermentation had beneficial effects by increasing DM digestibility and rumen total VFA content, without altering bacterial count.

Effects of Plant-origin Biological Active Materials on the Activities of Pathogenic Microbes and Rumen Microbes (식물유래 생리활성물질의 병원성 미생물 및 반추위 미생물 활성에 대한 영향)

  • 옥지운;이상민;임정화;이신자;문여황;이성실
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.709-718
    • /
    • 2006
  • In order to know the effects of Garlic, Scallion, Flavonoid, Urushiol, Anthocyanidin and Bio-MOS?? on pathogenic microbes and rumen anaerobic microbes, the growth rate of pathogens (including Escherichia coli O157, Salmonella paratyphi, Listeria monocytogenes and Staphylococcus aureus) and in vitro rumen microbial growth, gas production, ammonia concentration, carboxymethylcellulase(CMCase) activity, and microbial populations were investigated.The growth of pathogens was inhibited by supplementation of 0.1% Flavonoid, Scallion or Bio-MOS?? as biological active materials. And Scallion and Flavonoid had powerful antimicrobial properties on the pathogens applied in paper disc method.Although few effects by biological active materials disappeared in rumen fermentation in vitro, CMCase activity removed with supplementation of 1% of Flavonoid which had antimicrobial property in paper disc method. Scallion, having powerful antimicrobial property on pathogens and no inhibiting on rumen fermentation, might be a source in development of natural antimicrobial agent for ruminants.

In vitro Methanogenesis, Microbial Profile and Fermentation of Green Forages with Buffalo Rumen Liquor as Influenced by 2-Bromoethanesulphonic Acid

  • Agarwal, Neeta;Kamra, D.N.;Chatterjee, P.N.;Kumar, Ravindra;Chaudhary, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.818-823
    • /
    • 2008
  • The interaction of fibre degrading microbes and methanogens was studied using two forages, lucerne (Medicago sativa) hay and maize (Zea mays) hay, as substrate and 2-bromoethanesulphonic acid (BES) as an additive in an in vitro gas production test. Gas and methane production (ml/g dry matter) were significantly higher (p<0.05) on lucerne as compared to maize hay. Inclusion of BES in the incubation medium significantly suppressed methane emission irrespective of substrate. The population density of total bacteria, fungi, Ruminococcus flavefaciens and Fibrobacter succinogenes was higher, whereas that of methanogens was lower with maize hay as compared to lucerne as substrate. BES suppressed methanogen population by 7 fold on lucerene and by 8.5 fold on maize at 24 h incubation as estimated by real time-PCR. This suppression was accompanied by almost complete (>98% of control) inhibition of methanogenesis. The proportion of acetate decreased, whereas that of propionate increased significantly by inclusion of BES, resulting in narrowing of acetate to propionate ratio. In vitro true digestibility (IVTD) of lucerne was significantly higher as compared to maize but BES inclusion did not affect IVTD.

Nutrient and ruminal fermentation profiles of Camellia seed residues with fungal pretreatment

  • Yang, Chunlei;Chen, Zhongfa;Wu, Yuelei;Wang, Jiakun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.357-365
    • /
    • 2019
  • Objective: The experiment was conducted to evaluate the effects of four fungal pretreatments on the nutritional value of Camellia seed residues, and to evaluate the feeding value of pretreated Camellia seed residues for ruminants. Methods: Camellia seed residues were firstly fermented by four lignin degrading fungi, namely, Phanerochaete chrysosporium (P. chrysosporium)-30942, Trichoderma koningiopsis (T. koningiopsis)-2660, Trichoderma aspellum (T. aspellum)-2527, or T. aspellum-2627, under solid-state fermentation (SSF) conditions at six different incubation times. The nutritional value of each fermented Camellia seed residues was then analyzed. The fermentation profiles, organic matter degradability and metabolizable energy of each pre-treated Camellia seed residue were further evaluated using an in vitro rumen fermentation system. Results: After 5 days of fermentation, P. chrysosporium-30942 had higher degradation of lignin (20.51%), consumed less hemicellulose (4.02%), and the SSF efficiency reached 83.43%. T. koningiopsis-2660 degraded more lignin (21.54%) and consumed less cellulose (20.94%) and hemicellulose (2.51%), the SSF efficiency reached 127.93%. The maximum SSF efficiency was 58.18% for T. aspellum-2527 and 47.61% for T. aspellum-2627, appeared at 30 and 15 days respectively. All the fungal pretreatments significantly improved the crude protein content (p<0.05). The Camellia seed residues pretreated for 5 days were found to possess significantly increased organic matter degradability, volatile fatty acid production and metabolizable energy (p<0.05) after the treatment of either P. chrysosporium-30942, T. koningiopsis-2660 or T. aspellum-2527. The fungal pretreatments did not significantly change the rumen fermentation pattern of Camellia seed residues, with an unchanged ratio of acetate to propionate. Conclusion: The fungi showed excellent potential for the solid-state bioconversion of Camellia seed residues into digestible ruminant energy feed, and their shorter lignin degradation characteristics could reduce loss of the other available carbohydrates during SSF.

Development of an Environmental Friend Additive Using Antibacterial Natural Product for Reducing Enteric Rumen Methane Emission (항균활성 천연물질을 이용한 반추위 메탄저감용 친환경 첨가제 개발)

  • Lee, A-Leum;Yang, Jinho;Cho, Sang-Buem;Na, Chong-Sam;Shim, Kwan-Seob;Kim, Young-Hoon;Bae, Gui-Seck;Chang, Moon-Baek;Choi, Bitna;Shin, Su-Jin;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.491-502
    • /
    • 2014
  • The present study was conducted to investigate effective starter culture to improve biological activity of Asarum sieboldii. Antibacterial activity, antioxidant activity and reduction of enteric rumen methane production were used as criterions for biological activity. Ground A. sieboldii was added in MRS broth at 10% (w/v) and fermented by different starter cultures. Weissella confusa NJ28, Weissella cibaria NJ33, Lactobacillus curvatus NJ40, Lactobacillus brevis NJ42, Lactobacillus plantarum NJ45 and Lactobacillus sakei NJ48 were used for starter culture strains. Each starter culture was inoculated with 1% (v/v) ratio and fermentation was performed at $30^{\circ}C$ with agitation (150 rpm) for 48 h. MRS broth for the control was employed without starter culture. Then the fermentation growth was dried and extracted using ethyl alcohol. The growth of starter culture was detected at NJ40, NJ42, NJ45 and NJ48. And the highest cell growth was found in NJ40. Antibacterial activity against to Staphylococcus aureus, Listeria monocytogens, Mannheimia haemolytica and Salmonella gallinarum were observed in the extract fermented by NJ40 and NJ45. All treatments showed antioxidant activities, however, there were no significant differences (p>0.05). In in vitro rumen fermentation, negative control (NC) and positive control (PC) were assigned to without extract and with non-fermented A. sieboldii extract. Significant suppression of gas productions were detected in positive control and treatments compared to negative control (p<0.05). However, total volatile fatty acid production was not suppressed. Significant methane reduction per total volatile fatty acid productions were found in positive control and NJ45 treatment (p<0.05). The present study suggested a fermentation of A. sieboldii using NJ45 strain could improve its biological activity and make possible for its use in bio additive for enteric rumen methane mitigation without suppression of animal productivity.

Effects of Nitrate-rich Plant Extracts on the in vitro Ruminal Fermentation and Methane Production (질산염 화합물 함유 식물 추출물이 in vitro 반추위 발효성상과 메탄 발생에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Kim, Min Sung;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.95-105
    • /
    • 2016
  • This study was conducted to evaluate the effects of nitrate-rich plants extracts on the in vitro rumen fermentation characteristics and rumen methane production. The extracts of nitrate-rich plants, as potato, carrot, chinese cabbage, lettuce and spinach were used in this study. The ruminal fluid was collected from a cannulated Hanwoo cow fed concentrate and timothy in the ratio of 6 to 4. The 20mL of mixture, comparing McDougall's buffer and rumen fluid in the ratio 2 to 1, was dispensed anaerobically 50mL serum bottles containing 0.3g of timothy substrate and extracts of nitrogen-rich plants. The serum bottles were incubated 39℃ for 9, 12, 24, 48 hours. The pH value was decreased by increased incubation times and normal range to 6.31 to 6.96. The dry matter digestibility was significantly(p<0.05) lower in chinese cabbage than in control at 9h incubation time. Ammonia concentration was significantly(p<0.05) lower in potato, chinese cabbage, lettuce than in control and the rumen microbial growth rate was significantly(p<0.05) higher in carrot than in control at 24h incubation time. The concentrations of acetate and propionate was significantly(p<0.05) lower in treatment than in control. The concentration of butyrate was showed a different pattern depending on treatments. Total gas emissions was significantly(p<0.05) lower in chinese cabbage, lettuce, spinach than in control at 12h, 24h incubation time. Methane production was significantly(p<0.05) lower in potato, chinese cabbage, spinach than in control, carbon dioxide production was significantly(p<0.05) lower in treatment than in control. In conclusion, supplementation of the nitrate-rich plant extracts in ruminal fermentation in vitro resulted in decreasing the methane production without adversely affecting the fermentation characteristics. Particularly the chinese cabbage extract was regard as a potential candidate for reducing the methane emission in ruminants.

Effect of Different Level of Monensin Supplemented with Cold Process Urea Molasses Mineral Block on In vitro Rumen Fermentation at Different Days of Adaptation with Monensin

  • De, Debasis;Singh, G.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.320-325
    • /
    • 2005
  • Effect of period of adaptation and levels of monensin were studied for microbial fermentation/ digestibility to find out the optimum period of adaptation of monensin in rumen and suitable level of monensin in wheat straw+concentrate and wheat straw+UMMB diet. The mean digestibility of dry matter was decreased upto T-3 treatment (49.17%), however, digestibility of DM was affected upto period (P-2). NDF digestibility was affected due to treatment under P1 and P2 (p<0.05). Average digestibility of ADF was increased to 53.33% at T-3 level of monensin and P4 days of adaptation. TVFA (mmole/100 ml) were decreased from 9.49 in T-1 to 7.70 in T-7. Periods were not effectives except P2 (14 days of adaptation). Similarly, total gas was decrease with the increase of monensin levels in diet. Although acetate percentage in TVFA was not affected either due to level of monensin or period of adaptation but propionate was increased due to increase in monensin at 21 days of adaptation (P-3). Butyrate (%) was decreased significantly in T-2 to T-6 as compared to T-1 group. Total gas was significantly (p<0.01) higher in group T-1 (control) and it reduced significantly in T-5, however, differences in gas production between group T-3, T-5 and T-7 at P-1 was not significant. Methane production was reduced on P-3 and P-4 level of adaptation due to treatment. The overall result indicated that 21 days of adaptation with monensin was sufficient to mask the inhibiting effect of monensin to cell wall digestibility and 35 ppm monensin is optimum to reduce methane production and increase propionate productions.