• Title/Summary/Keyword: in vitro human digestion

Search Result 33, Processing Time 0.027 seconds

Antioxidative Changes of Blueberry Leaf Extracts in Emulsion-Type Sausage during In Vitro Digestion

  • Hur, Sun-Jin;Kim, Doo-Hwan;Chun, Se-Chul;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.689-695
    • /
    • 2013
  • This study was conducted to investigate the effects of in vitro human digestion on the antioxidant activity of blueberry leaf extracts (BLE) in emulsion-type sausages (ETS). Leaves from four cultivars of blueberries (Bluecrop, Bluegold, Duke, and Northland) collected from a wild blueberry farm were extracted with 80% ethanol. ETS were prepared with 0.2% BLE. The samples were then passed through an in vitro human digestion system which simulates the composition of the mouth, stomach, and small intestine juice. Only one phenolic compound (chlorogenic acid) was detected in the BLE. Northland BLE had appreciably higher amounts of chlorogenic acid than that of other BLE, both before and after in vitro human digestion. Antioxidant activity of any BLE was not influenced by in vitro human digestion, whereas the antioxidant activity of chlorogenic acid standard increased in response to in vitro human digestion in both 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric-reducing ability of plasma (FRAP). In the present study, the antioxidant activities of the BLE were not strongly influenced by in vitro human digestion, and the antioxidant activity depended on the chlorogenic acid content of ETS. Thus, compounds from blueberry leaves may have important applications in the future as natural antioxidants for meat products.

In Vitro Effects of Cooking Methods on Digestibility of Lipids and Formation of Cholesterol Oxidation Products in Pork

  • Hur, Sun Jin;Lee, Seung Yuan;Moon, Sung Sil;Lee, Seung Jae
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.280-286
    • /
    • 2014
  • This study investigated the effects of cooking methods on the digestibility of lipids and formation of cholesterol oxidation products (COPs) in pork, during in vitro human digestion. Pork patties were cooked using four different methods (oven cooking, pan frying, boiling, and microwaving), to an internal temperature of approximately $85^{\circ}C$. The digestibility of pork patties were then evaluated, using the in vitro human digestion model that simulated the composition (pH, minerals, surfaceactive components, and enzymes) of digestive juices in the human mouth, stomach, and small intestine. The total lipid digestibility was higher after microwave cooking, whereas pan-frying resulted in lower in vitro digestibility, compared to the other cooking methods. The microwaving method followed by in vitro digestion also showed significantly higher content of free fatty acids and thiobarbituric acid reactive substances (TBARS), compared to the other cooking methods; whereas, the pan frying and boiling methods showed the lowest. Cholesterol content was not significantly different among the cooked samples before, and after in vitro human digestion. The formation of COPs was significantly higher in the microwave-treated pork samples, compared to those cooked by the other methods, which was consistent with the trend for lipid peroxidation (TBARS). We propose that from the point of view of COPs formation and lipid oxidation, the pan-frying or boiling methods would be useful.

Impact of Sodium Copper Chlorophyllin on Mercury Absorption Using an in Vitro Digestion with Human Intestinal Cell Model

  • Hwang, Han-Joon;Shim, Soon-Mi
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.564-568
    • /
    • 2008
  • The effects of sodium copper chlorophyllin (SCC) on bioaccessibility and uptake of mercury from fish were investigated using an in vitro digestion coupled with a Caco-2 cell. Fish along with SCC was subjected to a simulated in vitro digestion, which simulates both the gastric and small intestinal phase in vivo. Mercury bioaccessibility, the amount of mercury released from fish to aqueous phase following a digestion, was measured. Various amounts of SCC (0.1-25 mg) significantly reduced mercury bioaccessibility in a dose dependent manner by 49-89% compared to the negative control (fish without SCC) (p<0.05). Mercury bioaccessibility in varying molar ratios of mercury to positive control, 2,3-dimercapto-1-propane sulfonate (DMPS) was between 24 and 52%. Mercury uptake by Caco-2 cells from test media containing aqueous phase following in vitro digestion was measured after 6 hr incubation at $37^{\circ}C$. Cellular mercury uptake with increasing amount of SCC ranged from 0.352 to $0.052\;{\mu}g$ mercury/mg protein, while those in DMPS treatment were between 0.14 and $0.27\;{\mu}g$ mercury/mg protein. Our study suggests that SCC can reduce mercury absorption following fish consumption and may be efficient as a synthetic chelating agent for long term chronic mercury exposure in fish eating populations.

Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: a Tool for Assessing Human Cancer Risk

  • Hamidi, Elliyana Nadia;Hajeb, Parvaneh;Selamat, Jinap;Razis, Ahmad Faizal Abdull
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.

In Vitro Digestibility of Rice and Barley in Forms of Raw Flour and Cooked Kernels

  • Han, Jung-Ah;Jang, Su-Hae;Lim, Seung-Taik
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.180-183
    • /
    • 2008
  • Digestion properties of 3 types of cereals, white rice, brown rice, and barley, were measured after cooking or grinding. Regardless of the processing methods, white rice showed the highest rate and the greatest extent of digestion, whereas barley showed the lowest values. During the early digestion period, cooked white rice kernels had a larger k (kinetic constant) value than uncooked white rice flour, indicating that cooking induced faster digestion than grinding. In the case of brown rice and barley, the cell wall in cooked kernels remained intact and resulted in a lower k values than those of uncooked flour. However, after 3 hr of digestion, the total digestion extent was greater for the cooked brown rice and barley than that for uncooked flours. The high content of slowly digestible starch (SDS) in cooked brown rice and barley might be due to the starch fraction which was protected by the cell wall. The resistant starch (RS) content, however, was greater for the uncooked flours than that for cooked kernels. The cooked kernels of 3 cereal samples tested showed higher glycemic index (GI) values than the uncooked flours.

Development of in vitro 3D hair growth model using tissue engineering technology

  • Park, Jung-Keug
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.113-117
    • /
    • 2003
  • The recent development of methods for culturing hair follicles in vitro has proved an important tool to investigate many aspects of drug screening. Hair follicles develop as a result of epithelial-mesenchymal interactions between epidermal keratinocytes and dermal cells. We isolated some follicle cells using explantation and enzymatic digestion method from human scalp hair follicles. So we could culture some follicular cells, such as outer root sheath (ORS) cells, dermal papilla (DP) cells, dermal sheath (DS) cells, matrix cells and melanocytes. To induce hair morphogenesis in vitro the cells were 3-D cultured as skin structures. Moreover, to develop hair follicel organ culture model, we applied dermal equivalent (DE) to culturing hair follicles to expand hair growth period.

  • PDF

Improvement of Transformation Efficiency Through In Vitro Methylation and SacII Site Mutation of Plasmid Vector in Bifidobacterium longum MG1

  • Kim, Jin-Yong;Wang, Yan;Park, Myeong-Soo;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1022-1026
    • /
    • 2010
  • The different cleavage patterns of pYBamy59 plasmid isolated from E. coli $DH5{\alpha}$ and B. longum MG1 by the cell extract of B. longum MG1 suggested that the main reason for its low transformation efficiency was related to the restriction modification (R-M) system. To confirm the correlation between the R-M system and transformation efficiency, in vitro methylation and site-directed mutagenesis were performed in pYBamy59. Sequence analysis of pYBamy59 fragments digested by the cell extract of B. longum MG1 revealed that all fragments were generated by restriction of the sequence recognized by SacII endonuclease. When pYBamy59 from E. coli was methylated in vitro by CpG or GpC methyltransferase, it was protected from SacII digestion. Site-directed mutagenesis, which removed SacII sites from pYBamy59, or in vitro methylation of pYBamy59 showed 8- to 15-fold increases in the transformation efficiency over intact pYBamy59. Modification of the SacII-related R-M system in B. longum MG1 and in vitro methylation in pYBamy 59 can improve the transformation efficiency in this strain. The results showed that the R-M system is a factor to limit introduction of exogenous DNA, and in vitro modification is a convenient method to overcome the barrier of the R-M system for transformation.

In vitro Digestibility of Cooked Noodle Products

  • Han, Jung-Ah;Seo, Tae-Rang;Lee, Su-Jin;Lim, Seung-Taik
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1078-1081
    • /
    • 2007
  • The in vitro digestive properties of 6 domestic noodle products (spaghetti, somyeon, ramyeon, dangmyeon, naengmyeon, and jjolmyeon) were compared after cooking under the manufacture's recommended cooking conditions. The kinetic constant (k), representing the rate of hydrolysis at the initial digestion stage, was highest in the somyeon noodles (0.1151), followed by naengmyeon (0.0954), and was lowest in the spaghetti (0.0421). However, the concentration of starch ($C_{\infty}$) hydrolyzed over 2 hr was not different between the spaghetti (96.22) and the somyeon (96.40), indicating that different digestion behaviors occurred in each type of noodle, even though the amounts of digested starch were similar. The ramyeon, dangmyeon, and naengmyeon noodles showed relatively lower $C_{\infty}$ values than the spaghetti and the somyeon noodles. The spaghetti had the highest amount of slowly digestible starch (SDS, 43%) and the lowest glycemic index (GI, 87.8), whereas the somyeon had the lowest SDS value (9.6%) and the highest or (93.0). The digestibility differences among the noodles were attributed to differences in their flour compositions and manufacturing processes.