• Title/Summary/Keyword: in vitro digestion

Search Result 226, Processing Time 0.026 seconds

In Vitro Effects of Cooking Methods on Digestibility of Lipids and Formation of Cholesterol Oxidation Products in Pork

  • Hur, Sun Jin;Lee, Seung Yuan;Moon, Sung Sil;Lee, Seung Jae
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.280-286
    • /
    • 2014
  • This study investigated the effects of cooking methods on the digestibility of lipids and formation of cholesterol oxidation products (COPs) in pork, during in vitro human digestion. Pork patties were cooked using four different methods (oven cooking, pan frying, boiling, and microwaving), to an internal temperature of approximately $85^{\circ}C$. The digestibility of pork patties were then evaluated, using the in vitro human digestion model that simulated the composition (pH, minerals, surfaceactive components, and enzymes) of digestive juices in the human mouth, stomach, and small intestine. The total lipid digestibility was higher after microwave cooking, whereas pan-frying resulted in lower in vitro digestibility, compared to the other cooking methods. The microwaving method followed by in vitro digestion also showed significantly higher content of free fatty acids and thiobarbituric acid reactive substances (TBARS), compared to the other cooking methods; whereas, the pan frying and boiling methods showed the lowest. Cholesterol content was not significantly different among the cooked samples before, and after in vitro human digestion. The formation of COPs was significantly higher in the microwave-treated pork samples, compared to those cooked by the other methods, which was consistent with the trend for lipid peroxidation (TBARS). We propose that from the point of view of COPs formation and lipid oxidation, the pan-frying or boiling methods would be useful.

Evaluation of the Digestibility of Korean Hanwoo Beef Cuts Using the in vitro Physicochemical Upper Gastrointestinal System

  • Jeon, Ji-Hye;Yoo, Michelle;Jung, Tae-Hwan;Jeon, Woo-Min;Han, Kyoung-Sik
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.682-689
    • /
    • 2017
  • The aim of this study was to investigate the digestibility of different Korean Hanwoo beef cuts using an in vitro digestion model, in vitro physicochemical upper gastrointestinal system (IPUGS). The four most commonly consumed cuts - tenderloin, sirloin, brisket and flank, and bottom round - were chosen for this study. Beef samples (75 g) were cooked and ingested into IPUGS, which was composed of mouth, esophagus, and stomach, thereby simulating the digestion conditions of humans. Digested samples were collected every 15 min for 4 h of simulation and their pH monitored. Samples were visualized under a scanning electron microscope (SEM) to examine changes in the smoothness of the surface after digestion. Analysis of the amino acid composition and molecular weight (MW) of peptides was performed using reverse-phase high performance liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis, respectively. Following proteolysis by the gastric pepsin, beef proteins were digested into peptides. The amount of peptides with higher MW decreased over the course of digestion. SEM results revealed that the surface of the digested samples became visibly smoother. Total indispensable and dispensable amino acids were the highest for the bottom round cut prior to digestion simulation. However, the total amount of indispensable amino acids were maximum for the tenderloin cut after digestion. These results may provide guidelines for the elderly population to choose easily digestible meat cuts and products to improve their nutritional and health status.

Comparison of In Vitro Digestion Kinetics of Cup-Plant and Alfalfa

  • Han, K.J.;Albrecht, K.A.;Mertens, D.R.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.641-644
    • /
    • 2000
  • In vitro true digestibility of cup-plant (Silphium perfoliatum L.) is higher than other alternative forages and comparative to alfalfa (Medicago sativa L.) even at the high neutral detergent fiber (NDF) concentration. This study was conducted to determine whether the digestion kinetic parameters of cup-plant could explain high in vitro true digestibility of cup-plant at the several NDF levels. Cup-plant and alfalfa were both collected in Arlington and Lancaster, Wisconsin to meet the NDF content within 40 to 50% range. The collected samples were incubated with rumen juice to investigate the digestion kinetics at 3, 6, 9, 14, 20, 28, 36, 48, and 72 h. Kinetics was estimated by the model $R=D_0\;e-k(t-L)+U$ where R is residue remaining at time t, and $D_0$ is digestible fraction, k is digestion rate constant, L is discrete lag time, and U is indigestible fraction. Parameters of the model were estimated by the direct nonlinear least squares (DNLS) method. Digestion rate and potential extent of digestion were not statistically different in either forage. However, alfalfa had shorter lag time (p<0.05). The indigestible fraction increased with maturation in alfalfa and in cup-plant (p<0.05). The ratio of indigestible fraction to acid detergent lignin (ADL) was higher in cup-plant than in alfalfa (p<0.05). From the results, alfalfa is probably digested more rapidly than cup-plant, however, cup-plant maintains higher digestibility with maturation due to a relatively slower increase of indigestible fraction in NDF.

Effects of Amylose Contents and Degree of Gelatinization of Rice Flour on In Vitro Starch Digestibility, Physical Characteristics, and Morphological Properties

  • Park, Ji Eun;Bae, In Young;Oh, Im Kyung;Lee, Hyeon Gyu
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • The relationship of in vitro starch digestibility and gel strength was investigated at various concentrations (10-30%) of rice cultivars with different amylose contents (27.9, 17.9, and 5.2%). As the rice flour concentration increased, predicted glycemic index decreased, but gel strength increased regardless of amylose contents. Gel strength correlated strongly with amylose content, whereas in vitro starch digestibility was more highly affected by rice flour concentration than by amylose contents. Moreover, the impact of degree of gelatinization on in vitro starch digestibility of high amylose rice was also examined in terms of structural features and rheological properties. The digestion rate of fully gelatinized flour was 1.7 times higher than that of native flour, while the disrupted structure with a different gelatinization degree during starch digestion was visually demonstrated through the X-ray diffraction and molecular distribution analysis. The rice flour changed from an A-type to a V-type pattern and showed difference in crystalline melting. The low molecular weight distribution increased with increasing degree of gelatinization during starch digestion. The apparent viscosity also increased with degree of gelatinization. These results demonstrated that the starch digestibility of rice was more affected by concentration than by amylose content, as well as by the degree of gelatinization due to structural difference.

Evaluation of Protein Hydrolysis and Amino Acid Ratio among Different Goat Cuts by in vitro Digestion Model

  • Jei, Oh;Joohyun, Kang;Susie, Kim;Jeonghyun, Cho;Yohan, Yoon
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.411-417
    • /
    • 2022
  • The purpose of this study was to evaluate protein hydrolysis and the amino acid ratio among different cuts of goat meat, such as the foreleg, hindleg, loin, and rib, using an in vitro digestion model. The corresponding cuts of beef and pork were used to compare with the goat meat. The hindleg (8.32%) and rib (8.32%) had the highest levels of protein hydrolysis among the goat cuts. There was no significant difference in protein hydrolysis between goat and pork (8.57%), ribs (P > 0.05), which had higher levels of protein hydrolysis than the beef ribs. Before digestion, the glutamine (53.44%) and glycine (11.03%) ratios were highest in the pre-digested goat foreleg and loin (P < 0.05). After in vitro digestion, goat ribs had the highest lysine ratio (17.54%) among the different cuts, and the lysine ratio was significantly higher in goat ribs than beef ribs (P < 0.05). This study provides basic data on protein hydrolysis and the amino acid composition of different cuts of goat meat, which may facilitate the evaluation of protein digestion patterns and bioavailability.

Study on Improvement of Cooking Rice Method for Acceleration of Consumption of the Rice (쌀소비 촉진을 위한 쌀밥 조리 개선 연구 (I) - 취반시 조리수에 산, 지방, Cellulose 첨가에 따른 texture 변화)

  • 김경자;양화영;오미향;구정선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1993
  • This study was attempted to enhance taste and quality value of cooked rice by adding fat, vinegar, cellulose in cooking water. Cooked rice with five different levels of material in cooking water (100% water A: 10% vinegar B: 10% fat C: 10% fat and 10% vinegar D: 10% fat, 10% vinegar and 10% celloulose) was tested for rheology, fine structural changes, sensory evaluation, in vitro digestion. 1) Cooked rice by adding 10% fat rate was higher than A, B, D, E samples for softness, Jelly and increased in vitro digestion. 2) sensory evaluation conducted by tweenty university students a panelists showed that B, D sample were low value in flavour, texture and taste, but higher than A sample for softness, Jelly and in Vitro digestion. 3) E sample (l0% fat, 10%s vinegar, 10% cellulose) was more significant for taste, texture, and digestion than A sample. From these results, it was concluded that rice cooked with 10% of fat in cooking water was quite acceptable, in terms of practical food value consisting of palatability rheology and digestibility.

  • PDF

THE EFFECT OF MATURITY OF ITALIAN RYEGRASS (Lolium multiflorum, L) ON IN VITRO RUMEN DIGESTION AND GAS PRODUCTION

  • Fariani, Armina;Warly, L.;Ichinohe, T.;Fujihara, T.;Harumoto, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.247-254
    • /
    • 1996
  • Three stages of growth of Italian ryegrass (pre-blooming, P-B; early-blooming, E-B; and late-blooming, L-B) were used to evaluate the effect of maturity on in vitro digestion of dry matter, fiber components and gas production. The rumen digestibility and gas production values were obtained by incubation of each sample in the rumen fluid of sheep for 12, 24, 36, 48 and 72 hr, respectively. The results showed that digestibility of dry matter (DM) significantly reduced (p < 0.05) as advancing maturity of the grass. Similarly, the digestibility of neutral detergent fiber (NDF) and acid detergent fiber (ADF) also significantly decreased (p < 0.05) with advancing maturity at all incubation times. However, the effect of maturity on digestibility of cellulose and hemicellulose was only detected when the samples were incubated more than 36 hr, where L-B was lower than P-B and E-B. Potential digestibility of nutrients, the maximum digestibility attainable in the rumen theoretically, was also higher at P-B than those of E-B and L-B. The amount of gas produced by microbial fermentation was closely related to the extent of DM digestion, and it was negatively correlated with advancing maturity of the grass.

Exploration of nutritional and bioactive peptide properties in goat meat from various primal cuts during in vitro gastrointestinal digestion and absorption

  • Pichitpon Luasiri;Papungkorn Sangsawad;Jaksuma Pongsetkul;Pramote Paengkoum;Chatsirin Nakharuthai;Saranya Suwanangul;Sasikan Katemala;Narathip Sujinda;Jukkrapong Pinyo;Jarunan Chainam;Chompoonuch Khongla;Supaluk Sorapukdee
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1096-1109
    • /
    • 2024
  • Objective: This research aims to explore the nutritional and bioactive peptide properties of goat meat taken from various primal cuts, including the breast, shoulder, rib, loin, and leg, to produce these bioactive peptides during in vitro gastrointestinal (GI) digestion and absorption. Methods: The goat meat from various primal cuts was obtained from Boer goats with an average carcass weight of 30±2 kg. The meat was collected within 3 h after slaughter and was stored at -80℃ until analysis. A comprehensive assessment encompassed various aspects, including the chemical composition, cooking properties, in vitro GI digestion, bioactive characteristics, and the bioavailability of the resulting peptides. Results: The findings indicate that the loin muscles contain the highest protein and essential amino acid composition. When the meats were cooked at 70℃ for 30 min, they exhibited distinct protein compositions and quantities in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile, suggesting they served as different protein substrates during GI digestion. Subsequent in vitro simulated GI digestion revealed that the cooked shoulder and loin underwent the most significant hydrolysis during the intestinal phase, resulting in the strongest angiotensin-converting enzyme (ACE) and dipeptidyl peptidase-IV (DPP-IV) inhibition. Following in vitro GI peptide absorption using a Caco-2 cell monolayer, the GI peptide derived from the cooked loin demonstrated greater bioavailability and a higher degree of ACE and DPP-IV inhibition than the shoulder peptide. Conclusion: This study highlights the potential of goat meat, particularly cooked loin, as a functional meat source for protein, essential amino acids, and bioactive peptides during GI digestion and absorption. These peptides promise to play a role in preventing and treating metabolic diseases due to their dual inhibitory effects on ACE and DPP-IV.

Antioxidant and Anticholinesterase Potential of Two Nigerian Bitter Yams Using a Simulated Gastrointestinal Digestion Model and Conventional Extraction

  • Salawu, Sule Ola;Ajiboye, Praise Blessing;Akindahunsi, Akintunde Afolabi;Boligon, Aline Augusti
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.107-117
    • /
    • 2017
  • The purpose of this study was to evaluate the antioxidant and anticholinesterase activities of yellow and white bitter yams from South Western Nigeria using methanolic extraction and simulated gastrointestinal digestion models. The phenolic compounds in the bitter yam varieties were evaluated by high performance liquid chromatography with a diode array detector (HPLC-DAD). The total phenolic content of the bitter yams was measured by the Folin-Ciocalteu method, reductive potential by assessing the ability of the bitter yam to reduce $FeCl_3$ solution, and the antioxidant activities were determined by the 2,2-diphenyl-1-picrylhydrazyl radical ($DPPH^{\cdot}$) scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation ($ABTS^{{\cdot}+}$) scavenging activity, nitric oxide radical ($NO^{\cdot}$) scavenging ability, hydroxyl radical scavenging ability, and ability to inhibit $Fe^{2+}$-induced lipid oxidation. The HPLC-DAD analysis revealed the presence of some phenolic compounds in the studied bitter yam varieties, with varying degree of quantitative changes after cooking. The antioxidant indices (total phenolic content, total flavonoid content, reducing power, $DPPH^{\cdot}$ scavenging activity, $ABTS^{{\cdot}+}$ scavenging activity, and $NO^{\cdot}$ scavenging activity) were higher in the simulated gastrointestinal digestion model compared to the methanolic extract, with the in vitro digested cooked white bitter yam ranking higher. Similarly, the in vitro digested yams had a higher inhibitory action against lipid oxidation compared to the methanolic extracts, with the cooked white bitter yam ranking high. The methanolic extracts and in vitro enzyme digests showed no acetylcholinesterase inhibitory abilities, while methanolic extracts and the in vitro enzyme digest displayed some level of butyrylcholinesterase inhibitory activities. Therefore the studied bitter yams could be considered as possible health supplements.

Change of Hydrolysis Rate on Hydrogenated Palm Kernel Oil and Shea Butter Blendings Using In Vitro Digestion System (In Vitro Digestion에서 팜핵경화유와 시어버터 혼합 비율에 따른 가수분해율 변화)

  • Lee, Hyeon-Hwa;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1205-1215
    • /
    • 2017
  • In this study, the hydrolysis rate of palm kernel oil (HPKO) and shea butter were compared by in vitro digestion to develop low-digestible fats. HPKO exhibited a higher hydrolysis rate than shea butter. The initial rate and ${\Phi}max$ value of HPKO were 0.315 mM/s and 78.0%, while the corresponding values for shea butter were 0.117 mM/s and 41.4%. When the two fats were blended at various ratios, the hydrolysis rate, in terms of the ${\Phi}max$ value, was similar to that of shea butter until 2:8 (HPKO : shea butter, w/w). After the analysis of triacylglycerol species and the positional fatty acid composition, the factors that affected the hydrolysis rate were determined. The results suggest that the low hydrolysis rate of shea butter would be due mostly to the stearic acid located at the sn-1,3 positions of triacylglycerol molecules. These properties of shea butter are expected to be the nutritional benefits as a low-digestible fat in foods.