• Title/Summary/Keyword: in vitro assay

Search Result 2,508, Processing Time 0.031 seconds

In vitro test using chorioallantoic membrance vascular assay to assess the irritancy potential of surfactants (CAMVA(Choriollantoic Membrane Vascular Assay)를 이용한 계면활성제의 자극 평가에 관한 연구)

  • Go, Jae-Suk;An, Su-Seon;Park, Jong-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.21 no.1
    • /
    • pp.67-83
    • /
    • 1995
  • Skin irritations accompany the series of complex, physical and chemical changes. Alternative methods which reflect the biological phenomenon more sensitively are necessary for the purpose of reducing the animal tests and improving the accuracy and reliability. Chorioallantoic membrane (CAM) vascular assay is a in vitro method which utilizes the chorioallantoic membrane of hen's fertilized egg of about 10 days old. Test substances are placed directly onto the surface of the CAM and 1 hour later the CAM vasculature is subjectively evaluated to determine with a chemically related-injurious reponse including the appearance of haemorrage, congestion, coagulation, and so on. In this research, using the various surfactants, the correlations of CAMVA with in vivo models (intradermal safety test and human primary irritation test) were investigated. And CAMVA closely correlated to intradermal safety test (r=0.89) and human primary irritation test (r=0.90). From the result, it seems that CAMVA can also be used as a method for predicting the skin irritaions.

  • PDF

An in vitro Actinidia Bioassay to Evaluate the Resistance to Pseudomonas syringae pv. actinidiae

  • Wang, Faming;Li, Jiewei;Ye, Kaiyu;Liu, Pingping;Gong, Hongjuan;Jiang, Qiaosheng;Qi, Beibei;Mo, Quanhui
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.372-380
    • /
    • 2019
  • Pseudomonas syringae pv. actinidiae (Psa) is by far the most important pathogen of kiwifruit. Sustainable expansion of the kiwifruit industry requires the use of Psa-tolerant or resistant genotypes for the breeding of tolerant cultivars. However, the resistance of most existing kiwifruit cultivars and wild genotypes is poorly understood, and suitable evaluation methods of Psa resistance in Actinidia have not been established. A unique in vitro method to evaluate Psa resistance has been developed with 18 selected Actinidia genotypes. The assay involved debarking and measuring the lesions of cane pieces inoculated with the bacterium in combination with the observation of symptoms such as callus formation, sprouting of buds, and the extent to which Psa invaded xylem. Relative Psa resistance or tolerance was divided into four categories. The division results were consistent with field observations. This is the first report of an in vitro assay capable of large-scale screening of Psa-resistance in Actinidia germplasm with high accuracy and reproducibility. The assay would considerably facilitate the breeding of Psa-resistant cultivars and provide a valuable reference and inspiration for the resistance evaluation of other plants to different pathogens.

In Vitro Antitumor Properties of an Isolate from Leaves of Cassia alata L

  • Olarte, Elizabeth Iglesias;Herrera, Annabelle Aliga;Villasenor, Irene Manese;Jacinto, Sonia Donaldo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3191-3196
    • /
    • 2013
  • Leaf extracts of Cassia alata L (akapulko), traditionally used for treatment of a variety of diseases, were evaluated for their potential antitumor properties in vitro. MTT assays were used to examine the cytotoxic effects of crude extracts on five human cancer cell lines, namely MCF-7, derived from a breast carcinoma, SK-BR-3, another breast carcinoma, T24 a bladder carcinoma, Col 2, a colorectal carcinoma, and A549, a nonsmall cell lung adenocarcinoma. Hexane extracts showed remarkable cytotoxicity against MCF-7, T24, and Col 2 in a dose-dependent manner. This observation was confirmed by morphological investigation using light microscopy. Further bioassay-directed fractionation of the cytotoxic extract led to the isolation of a TLC-pure isolate labeled as f6l. Isolate f6l was further evaluated using MTT assay and morphological and biochemical investigations, which likewise showed selectivity to MCF-7, T24, and Col 2 cells with $IC_{50}$ values of 16, 17, and 17 ${\mu}g/ml$, respectively. Isolate f6l, however, showed no cytotoxicity towards the non-cancer Chinese hamster ovarian cell line (CHO-AA8). Cytochemical investigation using DAPI staining and biochemical investigation using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-a method used to detect DNA fragmentation-together with caspase assay, demonstrated apoptotic cell death. Spectral characterization of isolate f6l revealed that it contained polyunsaturated fatty acid esters. Considering the cytotoxicity profile and its mode of action, f6l might represent a new promising compound with potential for development as an anticancer drug with low or no toxicity to non-cancer cells used in this study.

Appropriate In Vitro Methods for Genotoxicity Testing of Silver Nanoparticles

  • Kim, Ha Ryong;Park, Yong Joo;Shin, Da Young;Oh, Seung Min;Chung, Kyu Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.3.1-3.8
    • /
    • 2013
  • Objectives We investigated the genotoxic effects of 40-59 nm silver nanoparticles (Ag-NPs) by bacterial reverse mutation assay (Ames test), in vitro comet assay and micronucleus (MN) assay. In particular, we directly compared the effect of cytochalasin B (cytoB) and rat liver homogenate (S9 mix) in the formation of MN by Ag-NPs. Methods Before testing, we confirmed that Ag-NPs were completely dispersed in the experimental medium by sonication (three times in 1 minute) and filtration ($0.2{\mu}m$ pore size filter), and then we measured their size in a zeta potential analyzer. After that the genotoxicity were measured and especially, S9 mix and with and without cytoB were compared one another in MN assay. Results Ames test using Salmonella typhimurium TA98, TA100, TA1535 and TA1537 strains revealed that Ag-NPs with or without S9 mix did not display a mutagenic effect. The genotoxicity of Ag-NPs was also evaluated in a mammalian cell system using Chinese hamster ovary cells. The results revealed that Ag-NPs stimulated DNA breakage and MN formation with or without S9 mix in a dose-dependent manner (from $0.01{\mu}g/mL$ to $10{\mu}g/mL$). In particular, MN induction was affected by cytoB. Conclusions All of our findings, with the exception of the Ames test results, indicate that Ag-NPs show genotoxic effects in mammalian cell system. In addition, present study suggests the potential error due to use of cytoB in genotoxic test of nanoparticles.

Antioxidant potentials of Hypericum hookerianum (Family: Hypericaceae) on CCl4 induced hepatotoxicity in rats

  • Wahile, Atul;Mukherjee, Kakali;Kumar, Venkatesan;Saha, Bishnu Pada;Mukherjee, Pulok K
    • Advances in Traditional Medicine
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2007
  • Free radicals are known to play important role in pathophysiology of hepatic disorders and antioxidants are employed along with other chemotherapeutic agents in treatment of such diseases. In search of natural antioxidant, successive extracts of Hypericum (H.) hookerianum (Family: Hypericaceae) were evaluated by in vitro and in vivo methods. Extracts of aerial parts of H. hookerianum were subjected for 1,1-diphenyl 2-picryl hydrazyl radical scavenging activity (DPPH assay), nitric oxide radicals scavenging assay and thiobarbituric acid reactive substances (TBARS) assay. Methanolic extract was found to be more active than other extracts in DPPH and in vitro TBARS assay with $IC_{50}$ at 5.82 ${\pm}$ 1.33 ${\mu}g/ml$ and 49.78 ${\pm}$ 3.79 ${\mu}g/ml$ respectively. While petroleum ether extract showed more potentials in scavenging the nitric oxide radicals with $IC_{50}$ 220.97 ${\pm}$ 2.69 ${\mu}g/ml$. The administration of $CCl_{4}$ to the control animals caused decrease in the level of catalase and superoxide dismutase, together with significant increase in the level of TBARS in liver and kidney. Reversal of these changes towards normal group was observed by administration of H. hookerianum methanolic extract at 50 and 100 mg/kg body weight, while other extracts were found to be less active.

Comet Assay to Detect the DNA Breakages in the Tissue of the Purple Clam ( Saxidomus purpuratus) and the Blood of the Olive Flounder (Paralichthys olivaceus) Exposed to 5 PAHs

  • Lee, Taek-Kyun;Kim, So-Jung;Park, Eun-Seok;Rora Oh;Yun, Hee-Young;Man Chang
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.159-159
    • /
    • 2003
  • Comet assay is a potential monitoring tool because DNA strand breakage may be produced by a wide range of agents. The comet assay, also called the single-cell gell electrophoresis (SCGE) assay, is rapid and sensitive method for the detection of DNA damage in cells. This study was performed for the identification of DNA damage in the cells from flounders and clams exposed to PAHs. As a control experiments, flounder and clam cells were exposed to $H_2O$$_2$. The cells exposed to $H_2O$$_2$ were displayed a typical nuclei movement DNA damage of cells were significantly increased when the isolated cells from the blood of flounders and the tissue of clams were in vitro exposed to the different concentrations (5, 10, 50, 100 ppb) of five kinds of PAHs (benzo[a]pyrene, pyrene, fluoranthene, anthrancene, and phenanthrene). For the in vivo test, flounders and clams were exposed to the different concentrations of BaP for 4 days. The results showed that DNA strand breakage was effected by the concentration of BaP and the duration of exposure. In high concentration of BaP, the mean tail lengths of nuclei was longer than it In low concentration, while the mean size of head DNA decreased. In this research, both in vitro and in vivo genotoxicity of PAHs could be biomonitored by the comet assay. Especially, clams and flounders seem to be useful as materials for monitoring genotoxic damage by comet assay.

  • PDF

INVESTIGATION OF IN VITRO AND IN VIVO ESTROGENIC OR ANTIESTROGENIC ACTIVITY OF CYPERMETHRIN

  • Kim, Soon-Sun;Rhee, Gyu-Seek;Kwack, Seung-Jun;Sohn, Kyung-Hee;Kim, So-Hee;Lee, Rhee-Da;An, Sang-Mi;Ki-Eun. Jeong;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.166-166
    • /
    • 2002
  • In the present study, estrogenic or antiestrogenic activity of cypermethrin, a pyrethroid insecticide was investigated. We used immature rat uterotrophic assay, estrogen-responsive calbindin-D9k (CaBP-9k) gene expression assay and luciferase reporter gene assay for measure of estrogenic potential of cypermethrin.(omitted)

  • PDF

In-Vitro Anticancer and Free Radical Scavenging Potential of Compound Formulation Used in Unani System of Medicine

  • Mannan, Mohd Nazir;Kazmi, Munawwar Husain;Chakraborty, Alokananda;Zakir, Mohammad;Ahmad, Tasleem;Lahari, K.
    • CELLMED
    • /
    • v.10 no.4
    • /
    • pp.27.1-27.6
    • /
    • 2020
  • Cancer is one of the leading cause of mortality in India as well as worldwide. The management of cancer by conventional therapy has shown life threatening adverse effects. The researchers are now exploring the natural way of treatment. Unani system of medicine have rich literature for cancer and many compound formulations have been described in this system. Unani system of medicine is based on holistic approach and treat human being as a unit with natural herbs, mineral and animal origin drugs. An important compound Unani formulation (CUF) from the literature has been chosen to explore the Unani claim of its anticancer activity. The phytochemical constituents were assessed using standard phytochemical screening method. Antioxidant property of this formulation was assessed by DPPH assay. The DPPH free radical scavenging assay was carried out by colorimetric method and ascorbic acid was taken as a positive control. Three different extracts of CUF on different concentrations were used to screening on human breast cancer (BCC) MCF-7 cell line. For the estimation of in-vitro cytotoxic potency of the investigated extracts was assessed on MTT assay by using trypan blue method and paclitaxel was used as the standard. Hydro-ethanolic (HE) extract showed highest free radical scavenging activity among all extracts. DPPH Assay showed substantial antioxidant activity of these extracts in hydro-ethanol extract at 1㎍ concentration of CUF. The CUF showed antioxidant and anticancer activity. The claim made by Unani physician has been proved.

Inhibitory Effect of Methanol Extracts and Solvent Fractions from Doenjang on Mutagenicity Using in vitro SOS Chromotest and in vivo Drosophila Mutagenic System (된장 메탄올 추출물 및 분획물에 의한 in vitro SOS Chromotest 실험계와 in vivo 초파리 돌연변이 검출계에서의 항돌연변이 효과)

  • Lim, Sun-Young;Lee, Sook-Hee;Park, Keun-Young;Yun, Hee-Sun;Lee, Won-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1432-1438
    • /
    • 2004
  • This study investigated the inhibitory effect of methanol extracts and several solvent fractions from doen-jang on mutagenicity using in vitro SOS chromotest and in vivo Drosophila mutagenic system. In order to determine an antimutagenic effect of doenjang methanol extracts, other soybean fermented foods and original materials were compared. The treatment of doenjang methanol extracts (100 ${\mu}$/assay) to SOS chromotest system inhibited N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced mutagenicity by 87~97% and showed higher antimutagenic effect than other fermented foods. Among solvent fractions from doenjang methanol extracts, the ethylacetate and dichloromethane fractions showed the stronger antimutagenic effect (91% and 95%, respectively) in SOS chromotest. In Drosophila mutagenic system, the treatment of ethylacetate fraction (5%/bottle) significantly inhibited aflatoxin $B_1$ induced mutagenicity by 97%. These results demonstrated that doenjang had an inhibitory effect to mutagenic agents in both in vitro and in vivo mutagenic systems, suggesting that its antimutagenic effect may be due to active compounds in the ethylacetate fraction from doenjang methanol extracts.