• Title/Summary/Keyword: in vitro/in vivo studies

Search Result 859, Processing Time 0.029 seconds

Antioxidant Activity of Essential Oils from Wedelia chinensis (Osbeck) in vitro and in vivo Lung Cancer Bearing C57BL/6 Mice

  • Manjamalai, A.;Grace, V.M. Berlin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3065-3071
    • /
    • 2012
  • Aim: The present investigation was to evaluate the effects of essential oils of Wedelia chinensis (Osbeck) on free radicals and in vivo antioxidant properties. Methods: Essential oils were extracted using hydro-distillation and compound analysis was performed by GC-MS analysis. Screening for inhibitory activity was conducted by DPPH and OH-scavenging assays. In addition an in vivo study was carried out in cell line implanted cancer bearing mice with assessment of levels of catalase, superoxide dismutase, glutathione peroxidase, lipid peroxidation, nitric oxide and reduced glutathione. Finally, lungs were dissected out for histopathology study of metastasis. Results: GC-MS analysis revealed the presence of carvocrol and trans-caryophyllene as the major compounds with 96% comparison with the Wilily and NBS libraries. The essential oil exhibited significant inhibition in DPPH free radical formation. Whereas reducing power and hydroxyl radical scavenging activity are dose dependent. When compared with the standard, it was found that the essential oil has more or less equal activity in scavenging free radicals produced. In the animal studies, the level of antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase, as well as glutathione, were found to be increased in treated groups whereas lipid peroxidation and nitric oxide were reduced. Histopathology report also shows that the essential oil has a significant combating effect against cancer development. Conclusion: In all the in vitro assays, a significant correlation existed between the concentrations of the essential oil and percentage inhibition of free radicals. The in vivo studies also has shown a very good antioxidant property for the essential oil during cancer development. From, these results the essential oil can be recommended for treating disease related to free radicals and to prevent cancer development.

Nuclear Imaging of Cellular Proliferation (핵의학적 세포증식 영상)

  • Yeo, Jeong-Seok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.198-204
    • /
    • 2004
  • Tumor cell proliferation is considered to be a useful prognostic indicator of tumor aggressiveness and tumor response to therapy but in vitro measurement of individual proliferation is complex and tedious work. PET imaging provides a noninvasive approach to measure tumor growth rate in situ. Early approaches have used $^{18}F$-FDG or methionine to monitor proliferation status. These 2 tracers detect changes in glucose and amino acid metabolism, respectively, and therefore provide only an indirect measure of proliferation status. More recent studies have focused on DNA synthesis itself as a marker of cell proliferation. Cell lines and tissues with a high proliferation rate require high rates of DNA synthesis. $[^{11}C]Thymidine$ was the first radiotracer for noninvasive imaging of tumor proliferation. The short half-life of $^{11}C$ and rapid metabolism of $[^{11}C]Thymidine$ in vivo make the radiotracer less suitable for routing use. Halogenated thymidine analogs such as 5-iodo-2-deoxyuridine (IUdR) can be successfully used as cell proliferation markers for in vitro studies because these compounds are rapidly incorporated into newly synthesized DNA. IUdR has been evaluated as a potential in vivo tracer in nuclear medicing but the image qualify and the calculation of proliferation rates are impaired by its rapid in vivo degradation. Hence, the thymidine analog $3'-deoxy-3'-^{18}F-fluorothymidine$ (FLT) was recently introduced as a stable proliferation marker with a suitable nuclide half-life and stable in vivo. $[^{18}F]FLT$ is phosphorylated to 3-fluorothymidine monophosphate by thymidine kinase 1 and reflects thymidine kinase 1 activity in proliferating cell. $[^{18}F]FLT$ PET is feasible in clincal use and well correlates with cellular proliferation. Choline is a precursor for the biosynthesis of phospholipids (in particular, phosphatidylcholine), which is the essential component of all eukaryotic cell membranes and $[^{11}C]choline$, which is a new marker for cellular proliferation.

Studies on the anti-coagulant component of Loranthus yadoriki

  • Lee, Sun-Kyung;Song, Hee-Sun;Yoo, Eun-A;Yang, Hyun-Ok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.71-71
    • /
    • 2003
  • Methanol extract of Loranthus yadoriki showed the prolongation effect of bleeding time in vivo using mice in dose dependent manner. From the MeOH extract of Loranthus yadoriki, compound-A was isolated by the activity guided isolation method using silicagel column chromatography. The anti-coagulant activity was evaluated by the bleeding time test in vivo and plasma recalcification time test in vitro. Compound A showed moderate anti -coagulant activity on plasma recalcification time in vitro.

  • PDF

Review of cases of patient risk associated with ginseng abuse and misuse

  • Paik, Doo Jin;Lee, Chang Ho
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.89-93
    • /
    • 2015
  • Ginseng has long been used as a functional food or therapeutic supplement and it is empirically known to be safe and nontoxic. During recent decades, a number of in vitro and in vivo experiments, as well as human studies have been conducted to prove the safety of various types of ginseng samples and their components. Clinical trials, case reports, and in vitro and in vivo research articles addressing the safety, toxicity, and other adverse events of ginseng application were selected and reviewed. Patient risks associated with ginseng abuse and misuse such as affective disorder, allergy, cardiovascular and renal toxicity, genital organ bleeding, gynecomastia, hepatotoxicity, hypertension, reproductive toxicity, and anticoagulant-ginseng interaction were reviewed and summarized. There are some cases of patient risk associated with ginseng abuse and misuse depending on patients' conditions although further investigation in more cases is required to clarify these issues.

Simple Analysis for Interaction between Nanoparticles and Dye-Containing Vesicles as a Biomimetic Cell-Membrane

  • Shin, Sohyang;Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.231-236
    • /
    • 2013
  • Some cytotoxicity studies for the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Therefore, non-biological screening methods, which are faster and simpler than in-vivo and in-vitro methods, are required as alternatives to current cytotoxicity tests. Here, we proposed a simple screening method for the analysis of the interaction between several AgNPs (bare-, citrate-, and polyvinylpyrrolidone-coating) and dye-containing vesicles acting as a biomimetic cell-membrane. The interaction between AgNPs and vesicles could be evaluated readily by UV-vis spectra. Absorbance deviation in UV-vis spectra revealed a large attraction between neighboring particles and vesicles. This was confirmed by (Derjagin, Landau, Verwey, and Overbeek) theory and DMF (dark-field microscopy) analysis. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

Determination of Water Content in Skin by using a FT Near Infrared Spectrometer

  • Suh Eun-Jung;Woo Young-Ah;Kim Hyo-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The water content of skin was determined using a FT near infrared (NIR) spectrometer. NIR diffuse reflectance spectra were collected from hairless mouse, in vitro, and from human inner arm, in vivo. It was found that the variation of NIR absorbance band 1450 nm from OH vibration of water and 1940 nm from the combination involving OH stretching and OH deformation, depending on the absolute water content of separated hairless mouse skin, in vitro, using the FT NIR spectrometer. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed good correlation. For practical use of the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo on the basis of the relative water content of stratum corneum from the conventional capacitance method. The PLS model predicted human skin moisture with a standard errors of prediction (SEP) of 3.98 at 1130-1830 nm range. These studies showed the possibility of a rapid and nondestructive skin moisture measurement using FT NIR spectrometer.

The effect of Panax notoginseng saponins on oxidative stress induced by PCV2 infection in immune cells: in vitro and in vivo studies

  • Wang, Qiu-Hua;Kuang, Na;Hu, Wen-yue;Yin, Dan;Wei, Ying-Yi;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.61.1-61.16
    • /
    • 2020
  • Background: Panax notoginseng saponins (PNS) are bioactive substances extracted from P. notoginseng that are widely used to treat cardiovascular and cerebrovascular diseases and interstitial diseases. PNS have the functions of scavenging free radicals, anti-inflammation, improving blood supply for tissue and so on. Objectives: The aim of this study was to investigate the effects of PNS on the oxidative stress of immune cells induced by porcine circovirus 2 (PCV2) infection in vitro and in vivo. Methods: Using an oxidative stress model of PCV2 infection in a porcine lung cell line (3D4/2 cells) and mice, the levels of nitric oxide (NO), reactive oxygen species (ROS), total glutathione (T-GSH), reduced glutathione (GSH), and oxidized glutathione (GSSG) and the activities of xanthine oxidase (XOD), myeloperoxidase (MPO) and inducible nitric oxide synthetase (iNOS) were determined to evaluate the regulatory effects of PNS on oxidative stress. Results: PNS treatment significantly reduced the levels of NO and ROS, the content of GSSG and the activities of XOD, MPO, and iNOS (p < 0.05), while significantly increasing GSH and the ratio of GSH/GSSG in infected 3D4/2 cells (p < 0.05).Similarly, in the in vivo study, PNS treatment significantly decreased the level of ROS in spleen lymphocytes of infected mice (p < 0.05), increased the levels of GSH and T-GSH (p < 0.05), significantly decreased the GSSG level (p < 0.05), and decreased the activities of XOD, MPO, and iNOS. Conclusions: PNS could regulate the oxidative stress of immune cells induced by PCV2 infection in vitro and in vivo.

Gambogenic Acid Induction of Apoptosis in a Breast Cancer Cell Line

  • Zhou, Jing;Luo, Yan-Hong;Wang, Ji-Rong;Lu, Bin-Bin;Wang, Ke-Ming;Tian, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7601-7605
    • /
    • 2013
  • Background: Gambogenic acid is a major active compound of gamboge which exudes from the Garcinia hanburyi tree. Gambogenic acid anti-cancer activity in vitro has been reported in several studies, including an A549 nude mouse model. However, the mechanisms of action remain unclear. Methods: We used nude mouse models to detect the effect of gambogenic acid on breast tumors, analyzing expression of apoptosis-related proteins in vivo by Western blotting. Effects on cell proliferation, apoptosis and apoptosis-related proteins in MDA-MB-231 cells were detected by MTT, flow cytometry and Western blotting. Inhibitors of caspase-3,-8,-9 were also used to detect effects on caspase family members. Results: We found that gambogenic acid suppressed breast tumor growth in vivo, in association with increased expression of Fas and cleaved caspase-3,-8,-9 and bax, as well as decrease in the anti-apoptotic protein bcl-2. Gambogenic acid inhibited cell proliferation and induced cell apoptosis in a concentration-dependent manner. Conclusion: Our observations suggested that Gambogenic acid suppressed breast cancer MDA-MB-231 cell growth by mediating apoptosis through death receptor and mitochondrial pathways in vivo and in vitro.

Developmental toxicity and anti-inflammatory effect of the soft coral Dendronephthya gigantea collected from Jeju Island in zebrafish model

  • Lee, Seung-Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.12
    • /
    • pp.32.1-32.7
    • /
    • 2017
  • Recent in vitro studies have demonstrated that extract of soft coral Dendronephthya gigantea (SCDE) had strong anti-inflammatory activities. However, the direct effects of SCDE on anti-inflammatory activities in vivo model remained to be determined. Therefore, the present study was designed to assess in vivo anti-inflammatory effect of SCDE using lipopolysaccharide (LPS)-stimulated zebrafish model. We also investigated whether SCDE has toxic effects in zebrafish model. The survival, heart beat rate, and developmental abnormalities were no significant change in the zebrafish embryos exposed to at a concentration below $100{\mu}g/ml$ of SCDE. However, lethal toxicity was caused after exposure to 200 and $400{\mu}g/ml$ of SCDE. Treating zebrafish model with LPS treatment significantly increased the reactive oxygen species (ROS) and nitric oxide (NO) generation. However, SCDE inhibited this LPS-stimulated ROS and NO generation in a dose-dependent manner. These results show that SCDE alleviated inflammation by inhibiting the ROS and NO generation induced by LPS treatment. In addition, SCDE has a protective effect against the cell damage induced by LPS exposure in zebrafish embryos. This outcome could explain the profound anti-inflammatory effect of SCDE both in vitro as well as in vivo, suggesting that the SCDE might be a strong anti-inflammatory agent.

Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-ʟ-Methionine

  • Kim, Ki Taek;Kim, Ji Su;Kim, Min-Hwan;Park, Ju-Hwan;Lee, Jae-Young;Lee, WooIn;Min, Kyung Kuk;Song, Min Gyu;Choi, Choon-Young;Kim, Won-Serk;Oh, Hee Kyung;Kim, Dae-Duk
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.434-440
    • /
    • 2017
  • S-methyl-$\small{L}$-methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.