• Title/Summary/Keyword: in situ polymerization.

Search Result 169, Processing Time 0.027 seconds

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method (In-situ 중합방법에 따른 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체의 GO 분산성 연구)

  • Lee, Bom Yi;Park, Ju Young;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.336-340
    • /
    • 2015
  • Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

Synthesis and Characterization of Silica/Polystyrene Composite Nanoparticles by in situ Miniemulsion Polymerization (In situ 미니에멀젼중합에 의한 실리카/폴리스타이렌 복합체 나노입자의 합성과 특성)

  • Patole, Archana S.;Patole, S.P.;Song, Mi-Hyang;Yoon, Joo-Young;Kim, Jin-Hwan;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • New coupling agent or surface modified agent (9-decenoic acid) was used to enhance the compatibility between silica and polystyrene in silica/polystyrene hybrid nanocomposite, synthesized by in situ miniemulsion polymerization. Composites contain well dispersed nanosize silica particles. Related tests and analyses confirmed the success of synthesis. Functionalization of silica by 9-decenoic acid and silica on the polystyrene was confirmed by FTIR. TGA showed presence and amount of silica in final latex. The glass transition temperature of the hybrid nanocomposite was increased with the silica amount. SEM and TEM analysis showed the spherical morphology of PS and composite with an average diameter of 55 nm. The presence of silica within composite was confirmed by EDS attached to the existing TEM.

On the Properties of TLCP/PBT Blends Prepared by In Situ Polymerization in PBT Solution (In situ 중합에 의해서 제조된 TLCP/PBT 블렌드의 특성 연구)

  • Choi, Jae-Kon;Park, Il-Soo;Kim, Sun;Choi, Yoo-Sung;Lee, Eung-Jae;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.217-227
    • /
    • 2004
  • A new thermotropic liquid crystalline polymer(TLCP) containing a triad aromatic ester type mesogenic unit and butylene terephthalate unit(BT) in the main chain was synthesized by polycondensation reaction. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature from solid to mesophase was $260^{\circ}C$. The TLCP/PBT blends were prepared by in-situ polymerization in PBT solution and characterized by differential scanning calorimeter(DSC), thermogavimetric analyzer(TGA), scanning electron microscope(SEM), x-ray diffractometer(XRD), and dynamic mechanical thermal analyze, (DMTA). The blends showed well dispersed TLCP phases with domain sizes $0.05{\sim}0.2{\mu}m$ in the PBT matrix. As the increasing TLCP content from 5 to 20 wt%, ${\Delta}Hm$ values of pure PBT in the blend were increased because TLCP acts as a nucleating agent in the PBT matrix. The mechanical properties of the blends depended on the TLCP contents because the TLCP acted effectively as a reinforcing material in the PBT matrix. The blends showed good interfacial adhesion between the TLCP phase and PBT matrix.The blends prepared by in-situ polymerization showed higher mechanical properties and well dispersed TLCP domains than those of the blends prepared by melt blending.

Silicate dispersion and rheological properties of high impact polystyrene/organoclay nanocomposites via in situ polymerization

  • Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.227-233
    • /
    • 2008
  • High impact polystyrene (HIPS)/organoclay nanocomposites via in situ polymerization were synthesized and their rheological properties were investigated. For the study, two types of organoclays were used: a commercially available organoclay, Cloisite 10A (C10A), and a laboratory-prepared organoclay having a reactant group, vinylclay (ODVC). The X-ray diffraction and transmission electron microscopy experiments revealed that the HIPS/ODVC nanocomposite achieved an exfoliated structure, whereas the HIPS/C10A nanocomposite achieved an intercalated structure. In the small-amplitude oscillatory shear experiments, both storage modulus and complex viscosity increased with increasing organoclay. A pronounced effect of the organoclay content was observed, resulting in larger storage modulus and stronger yield behavior in the low frequency region when compared to neat HIPS. The crossover frequencies associated with the inverse of a longest relaxation time decreased as the organoclay content increased. Over a certain value of ODVC content, a change of pattern in rheological properties could be found, indicating a solid-like response with storage modulus greater than loss modulus at all frequencies.

Coordination Polymerization of Carbon Double Bond Catalyzed by Organometallic Compounds (유기금속화합물 촉매에 의한 탄소이중결합의 배위중합)

  • Lee Dong-ho
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.321-330
    • /
    • 2005
  • In 1990's the Korean polyolefin industry boomed up through the development of magnificient polymerization catalysts. To understand the general situation of polymerization catalyst R & D, the various experimental results had been summarized for the investigation of not only the supported Ziegler-Natta catalyst used presently in polyolefin industry but also the metallocene catalysts applied for the preparation of special grade of polyolefin. In addition, it had been shown that the new polymeric materials were prepared by new developed catalyst, and the polymer in-situ nanocomposites could be obtained with the application of catalyst heterogenization procedures.

Preparation and characterization of Melamine-Formaldehyde Resin Microcapsules Containing Fragrant Oil

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Yun, Jong-Sun;Jang, Hong-Gi;Kim, Sun-Ho;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.332-336
    • /
    • 2006
  • In this study, melamine-formaldehyde microcapsules were prepared via in situ polymerization using peppermint oil as a core material, melamine-formaldehyde as the wall material, Tween 20 as the emulsifier, and poly (vinyl alcohol) as a protective colloid. The melamine-formaldehyde microcapsules prepared in this study were then evaluated with regard to their structures, thermal properties, particle size distributions, morphologies, and release behaviors.

Electrical and Thermal Properties of Poly(p-phenylene sulfide) Reduced Graphite Oxide Nanocomposites

  • Chae, Byung-Jae;Kim, Do Hwan;Jeong, In-Soo;Hahn, Jae Ryang;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.221-225
    • /
    • 2012
  • Graphite oxide (GO) was produced using the modified Hummer's method. Poly(p-phenylene sulfide) (PPS)/reduced graphite oxide (RGO) composites were prepared by in situ polymerization method. The electrical conductivity of the PPS/RGO composites was no more than 82 S/m. It was found that as GO content increased in the PPS/RGO composites, the crystallization temperature and electrical conductivity of the composites increased and the percolation threshold value was at 5-8 wt% of GO content.

Kinetics of Acrylamide Solution Polymerization Using Potassium Persulfate as an Initiator by in situ IR

  • Kang, Shin-Choon;Park, Yoo-Jeong;Kim, Hyung-Zip;Kyong, Jin-Burm;Kim, Dong-Kook
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • We have studied the polymerization kinetics of acrylamide in aqueous solution with potassium persulfate as an initiator by using quantitative real-time in situ IR spectroscopy and monitoring the profiles of peaks in the range 1900-850 cm$\^$-1/. The conversion of acrylamide was calculated from the disappearance of the peak at 988 cm$\^$-1/, which is the out-of-plane bending mode of the=C-H unit, normalized to the C=O stretching peak at 1675 cm$\^$-1/, as an internal standard. For reaction temperatures in the range 40-65$^{\circ}C$ and initiator and monomer concentrations of 0.9-2.6 mmol/L and 0.5-1.1 mol/L, respectively, we deduced that the rate of monomer consumption follows the relation R$\_$p/=k[K$_2$S$_2$O$\_$8/]$\^$0.5/ [Μ]$\^$1.35${\pm}$0.10/. In addition, we obtained activation parameters from an evaluation of the kinetic data.

Factors Affecting the Characteristics of Melamine Resin Microcapsules Containing Fragrant Oils

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Jang, Hong-Gi;Kim, Sun-Ho;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.391-395
    • /
    • 2006
  • Microcapsules containing fragrant oils as a core material were prepared by in situ polymerization, using melamine-formaldehyde prepolymer as the wall material. The several parameters, such as stirring times, stirring rates, emulsifier types, emulsifier concentrations, and the viscosity of the core materials, affect the characteristics of the microcapsules. These parameters were investigated by the analyses of microcapsule size, particle size distribution, and morphology. The average microcapsule size decreased with an increase in stirring time, stirring rate, emulsifier concentration, and viscosity of the core material. It was also found that poly(vinyl alcohol) as a protective colloid could enhance the stability of the melamine-formaldehyde microcapsules.