• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.028 seconds

In-situ Monitoring of Matric Suctions in a Weathered Soil Slope (풍화토 사면에서 강우로 인한 간극수압 변화에 대한 실험연구)

  • 이인모;조우성;김영욱;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Rainfall-induced landslides in a weathered granite soil slope usually happen on shallow slip surfaces above the groundwater table. The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure (or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time elapse in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 in order to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. Finite-element transient seepage analyses are also conducted using SEEP/W. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with the change of depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

Application of Laser-Induced Fluorescence for EDC monitoring in aquatic system

  • Ko Eun-Joung;Kim Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.117-121
    • /
    • 2005
  • In order to monitor the levels and seasonal variations of EDCs, samples of the discharged effluent from sewage & wastewater treatment plants and river waters were collected. The target EDCs including bisphenol A and alkylphenols were determined by Laser-induced fluorescence(LIF) as in-situ monitoring technique. The category of EDCs showed similar fluorescence spectra and nearly equal decay time. This point makes it hard to distinguish each EBCs from the EDCs mixture by LIF and LIF results were expressed only by the total EDCs. However, LIF monitoring results and GC-MS results was comparable. The correlation coefficient between EDCs concentration acquired from GC-MS and fluorescence intensity from LIF was significant. This study supports the feasibility of the application of LIF into EDCs monitoring In aquatic system.

  • PDF

Field monitoring of splitting failure for surrounding rock masses and applications of energy dissipation model

  • Wang, Zhi-shen;Li, Yong;Zhu, Wei-shen;Xue, Yi-guo;Jiang, Bei;Sun, Yan-bo
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.595-609
    • /
    • 2017
  • Due to high in-situ stress and brittleness of rock mass, the surrounding rock masses of underground caverns are prone to appear splitting failure. In this paper, a kind of loading-unloading variable elastic modulus model has been initially proposed and developed based on energy dissipation principle, and the stress state of elements has been determined by a splitting failure criterion. Then the underground caverns of Dagangshan hydropower station is analyzed using the above model. For comparing with the monitoring results, the entire process of rock splitting failure has been achieved through monitoring the splitting failure on side walls of large-scale caverns in Dagangshan via borehole TV, micro-meter and deformation resistivity instrument. It shows that the maximum depth of splitting area in the downstream sidewall of the main power house is approximately 14 m, which is close to the numerical results, about 12.5 m based on the energy dissipation model. As monitoring result, the calculation indicates that the key point displacement of caverns decreases firstly with the distance from main powerhouse downstream side wall rising, and then increases, because this area gets close to the side wall of main transformer house and another smaller splitting zone formed here. Therefore it is concluded that the energy dissipation model can preferably present deformation and fracture zones in engineering, and be very useful for similar projects.

The Development of Monitoring System for Guide Roller in Wire Rolling Process (선재 가이드롤러 모니터링 시스템 개발)

  • Son, Bong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.671-673
    • /
    • 1999
  • In order to cope with the occurrence of abnormal operation, rotatory condition monitoring system for guide roller of finishing train in wire rolling has been developed. In this study, proximity sensor and its holding devices that could overcome severe in-situ measurement conditions was designed and MMI software using C++ was programmed. Performance of the developed system turned out to be good enough as results of in-line test for POSCO #3 wire rolling mill. It is expected to contribute to prevent the cobble and the grade-down of products caused by the abnornormal operation of guide rollers.

  • PDF

State-of-the-art and challenges of non-destructive techniques for in-situ radiological characterization of nuclear facilities to be dismantled

  • Amgarou, Khalil;Herranz, Margarita
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3491-3504
    • /
    • 2021
  • This paper reports on the state-of-the-art of the main non-destructive assay (NDA) techniques usually used for in-situ radiological characterization of nuclear facilities subject to a decommissioning programme. For the sake of clarity and coherence, they have been classified as environmental radiation monitoring, surface contamination measurements, gamma spectrometry, passive neutron counting and radiation cameras. Particular mention is also made here to the various challenges that each of these techniques must currently overcome, together with the formulation of some proposals for a potential evolution in the future.

Frequency of Chromosome Aberrations Detected by Fluorescence in Situ Hybridization Using Triple Chromosome-Specific Probes in o Healthy Korean Population (3중 염색체 probe를 이용한 FISH(fluorescence in situ hybridization)기법으로 분석한 정상인의 염색체 이상빈도)

  • 정해원;김수영;신은희
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 1998
  • Fluorscence in situ hybridization with chromosome-specific probe has been shown to be a valid and rapid method for detection of chromosome rearrangements induced by chemical and physical agents. This method is useful for quantifying structural aberrations, expecially for stable ones, such as translocation and insertion, which are difficult to detect with conventional method in human lymphocyte. In order to use the FISH method as a biodosimeter for monitoring human population exposed to various chemical and physical agent, baseline level of chromosome rearragement was established. Blood from forty four healthy adults were collected and analysed with whole chromosome-specific probes by human chromosome 1,2 and 4. The frequencies of stable translocation were 2.45 per 100 cell equivalent and those of insertion, color juction, acentric and dicentric were 0.32, 3.28, 0.23 and 0.27 per 100 cell equivalent respectively. The frequencies of chromosome rearragements increased with age in both sexes except for dicenrics. From above result, stable aberrations accumulate with age and it may reflect integrated lifetime exposure of adverse environment.

  • PDF

A Study to Develop Optimal Injection System Using ISIS(the In-situ Soil Injection Simulator) (ISIS 시스템을 이용한 최적 그라우팅 시스템 개발 연구)

  • 천병식;김진춘;김경민;이민호;이정훈;김진수;박종근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.619-626
    • /
    • 2002
  • In this study, a correlation among pressure, time and quantity of injection was organized from the laboratory tests, which were executed many times representing in-situ soil conditions carefully and then it would be applied to the in-situ soil injection simulator which will be developed for optimal injection into the ground. The sort of sample soils were both sand(A specimen) and silty sand(B specimen). Injection tests were gone into operation by compaction state, injection velocity and the depth individually. In the ground improved with permeation Infection, the relation among injection pressure of the same depth, the injected quantities and time were systematic by the depth. By defining the limit range of injection pressure and quantity about the variety of a linear equation obtained from lining each of their trend, the application of laboratory injection monitoring program and the data to evaluate its realization were produced. In the ground improved with root type injection, the relation between injection pressure and the injected quantities was irregular because fracture state occurred quickly.

  • PDF

Case Study on Integrated In-line Oil Monitoring Sensor for Machine Condition Monitoring of Steel Making Industry (통합형 인-라인 오일 모니터링 센서의 제철설비 현장 적용사례)

  • Kong, H.;Han, H.G.;Kwak, J.S.;Chang, W.S.;Im, G.G.
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.73-77
    • /
    • 2010
  • One of the important trends for condition monitoring in the 21st century is the development of smart sensors that will permit the cost-effective continuous monitoring of key machine equipments. In this study, an integrated in-line oil monitoring sensor assigned for continuous in situ monitoring multiple parameters of oil performance is presented. The sensor estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical density of oil in three optical wave-bands ('Red', 'Green' and 'Blue') and water content is evaluated as relative saturation of oil by water. In order to evaluate the sensor's effectiveness, the sensor was applied to several used oil samples in steel making industry and the results were compared with those measured by standard test methods.

Structural Health Monitoring for Trains: A review of damage detection methods (철도차량 구조건전성모니터링: 손상 감지 기술 분석)

  • Chong, See-Yenn;Lee, Jung-Ryul;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1545-1561
    • /
    • 2008
  • Among all transportations, railway transports have been promisingly offering excellent energy conservation and travelling time. Inevitably, they become a main role in not only transport goods but also passengers. With leap in development of technology, trains have tremendously enhanced their services in terms of speed, accessibility and comfort. However, the safety and ride quality have become a main issue as the train speed increased. The higher speeds have led the structural dynamics and health must be monitored from time to time to ensure that they are in good condition to provide reliable ride. Among all monitoring systems, the structural health monitoring (SHM) systems are imperative important due to its capability of in-situ monitoring and inherently reduce the maintenance frequencies and the huge associated cost. In this paper, SHM systems and the related non-destructive test and evaluation methods were discussed. The types of damages related to train vehicles as well as the damage hot spots are also included in this paper.

  • PDF

Monitoring and Analysis on Die Loads in Multi-stage Cold Forging Process Using Piezo-Sensors (금형블록에 장착된 압조센서를 활용한 다단 냉간단조 공정의 모니터링 및 분석)

  • Kang, S.M.;Kang, K.J.;Yeom, S.R.;Lee, K.H.;Kim, J.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.5-10
    • /
    • 2022
  • In multi-stage cold forging process, to enhance the productivity and product quality, in-site process monitoring technique by implanting sensors such as piezo-sensor and acoustic emission sensor has been continuously studied. For accurate analysis of the process, the selection of appropriate sensors and implantation positions are very important. Until now, in a multi-state forging machine, wedge parts located at the end of punch-set are used but it is difficult to analyze minute changes in die block-set. In this study, we also implanted sensors to the die part (die spacer) and compared signals from both sensors and found that sensing signals from die part showed enhanced process monitoring results.