• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.033 seconds

Investigation of the Performance Characteristics of an In-Situ Particle Monitor at Low Pressures Using Aerodynamic Lenses (저압상태에서 공기역학적 렌즈를 이용한 In-Situ Particle Monitor의 성능특성 분석)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1359-1367
    • /
    • 2000
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at low pressures has been studied. We generated the uniform sized methylene blue particle beams using three identical aerodynamic lenses in the center of the vacuum line, and measured the detection efficiency of the ISPM. The effects of particle size, particle concentration, mass flow rate, system pressure, and arrangement of aerodynamic lenses on the detection efficiency of the ISPM were examined. Results show that the detection efficiency of the ISPM greatly depends on the mass flow rate, and the particle Stokes number. We also found that the optimum Stokes number ranges from 0.4 to 1.9 for the experimental conditions.

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

Performance Characteristics of In-Situ Particle Monitors at Sub-Atmospheric Pressure (감압상태에서의 In-Situ Particle Monitor의 성능특성)

  • Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1564-1570
    • /
    • 1998
  • In-situ particle monitors(ISPMs) are widely used for monitoring contaminant particles in vacuum-based semiconductor manufacturing equipment. In the present research, the performance of a Particle Measuring Systems(PMS) Vaculaz-2 ISPM at subatmospheric pressures has been studied. We created uniform upstream conditions of particle concentration and measured the detection efficiency, the lower detection limit, and the size response of the ISPM using uniform sized methylene blue aerosol particles. The effect of particle size, particle velocity, particle concentration, and system pressure on the detection efficiency was examined. Results show that the detection efficiency of the ISPM decreases with decreasing chamber pressure, and with increasing mass flow rate. The lower detection limit of the ISPM, determined at 50 % of the measured maximum detection efficiency, was found to be about $0.15{\sim}0.2{\mu}m$, which is similar to the minimum detectable size of $0.17{\mu}$ given by the manufacturer.

Design of Near Real-Time land Monitoring System over the Korean Peninsula

  • Lee, Kyu-Sung;Yoon, Jong-Suk
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.411-420
    • /
    • 2008
  • To provide technological foundation for periodic and real-time land monitoring over the Korean peninsula where the land cover changes are prevailing, the Land Monitoring Research project was initiated as one of five core projects within the Intelligent National Land Information Technology Innovation Project operated by the Korean Land Spatialization Group (KLSG). This four year project can be categorized into two research themes with nine sub-projects. The first research theme is dealing with the real-time data acquisition from aerial platform and in-situ measurements by ubiquitous sensor network (USN), ground video camera, and automobile-based data collection systems. The second research theme is mainly focused on the development of application systems that can be directly utilized in several public organizations dealing with land monitoring over the nation. The Moderate Resolution Imaging Spectroradiometer (MODIS)-based land monitoring system that is currently under development is one of such application systems designed to provide necessary information regarding the status and condition of land cover in near real-time.

  • PDF

Evaluation of Traffic Load and Moisture-Induced Nonlinear In-situ Stress on Pavement Foundation Layers (도로기초에서 교통 및 환경하중에 의한 비선형 현장응력 평가)

  • Park, Seong-Wan;Hwang, Kyu-Young;Jeong, Mun-Kyoung;Seo, Young-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.47-54
    • /
    • 2009
  • Better understanding of in-situ mechanical behavior of pavement foundations is very important to predict long-term effects on the system performance of transport infrastructure. For this purpose resilient stiffness characterization of geomaterials is needed to properly adopt such mechanistic analysis under both traffic and environmental loadings. In this paper in-situ monitoring data from KHC test road were used to analyze the non-linear response using finite element method for a selected constitutive model of foundation geomaterials, and the results were compared with the field data.

Comparative measurements of Criteria Pollutants Using DOAS and Conventional In-situ Monitoring Technique at Sung Nam city of Korea

  • Kim, Ki-Hyun;Jin, Byong-Bok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E4
    • /
    • pp.169-181
    • /
    • 2001
  • To test the compatibility of differential optical absorption spectroscopy (DOAS) and conventional in-situ monitoring technique we conducted a comparative analysis of the two systems using hourly measurement data sets of three criteria pollutants including No$_{2}$O$_{3}$, and SO$_{2}$ collected in months between April and June of 2001 at Sung Man city, Kyung Gi Province, Korea. The results of our comparative analysis were useful to evaluate the various aspects of DOAS performance, of particular the level of agreement with the counterpart method through computation of percent differences and correlation analysis. Interpretation of the mixing ratio data for those chemical species was however confined in terms of explaining the differences affected by the changes in environmental conditions because measurements of important meteorological parameters were limited during most of the study period. Nevertheless, the overall results of this study strongly demonstrated that the mixing ratio of major pollutants measured by the two different systems maintain strong compatibility from various respects.

  • PDF

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.

불포화 토양내에서 가스상 오존 측정을 위한 광섬유센서의 적용

  • 정해룡;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.111-114
    • /
    • 2003
  • A new monitoring system has been developed for in-situ and realtime measurement of ozone transport in unsaturated porous media using a fiber optic sensor. The calibration of the fiber optic transflection dip probe (FOTDP) system was successfully carried out at various ozone concentrations using a column with length of 30 cm and diameter of 5 cm packed with glass beads, which don't react with gaseous ozone. The breakthrough curves (BTCs) of ozone was obtained by converting the normalized intensity into ozone concentration. The FOTDP system reflected the ideal transport phenomena of gas phase ozone at various flow rates. The FOTDP system worked well for in-situ monitoring of gas phase ozone at various water saturations and in presence of SOM. However, the FOTDP system did not measure the ozone concentration at more than 70% water saturation.

  • PDF

An Experimental Study on Optimal Condition of Aerodynamic Lens in the Modified ISPM (개선형 ISPM에서 공기역학적 렌즈의 최적조건에 대한 실험적 연구)

  • 임효재;차옥환;설용태
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.1-4
    • /
    • 2004
  • An experimental study was conducted on the optimal configuration and size of ADFL(Aerodynamic Focusing Lens) which used in modified ISPM(In-Situ Particle Monitoring). The particle counting efficiency has been known as a function of distance and size of ADFL, thus we varied these parameters to find out the optimum values. From a result of experiment, it was found that two lenses and 6mm space between them showed a maximum particle measuring efficiency. To apply this modified ISPM to semiconductor manufacturing field, we need more experiment about the pressure change, flow rate, and input particle size.

  • PDF