• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.031 seconds

Stress and strain state in the segmental linings during mechanized tunnelling

  • Do, Ngoc-Anh;Oreste, Pierpaolo;Dias, Daniel;Antonello, Croce;Djeran-Maigre, Irini;Livio, Locatelli
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.75-85
    • /
    • 2014
  • The application of the mechanized tunnelling has been extended in recent years. There are at present different approaches that are used in the design of segmental tunnel linings supported in mechanized tunnels. Even though segmental lining is utilized for mechanized tunnels, its behaviour is still quite unclear under in situ stress and there is a lack of data regarding the distribution of stresses inside segmental linings. So far no single effective calculation method exists for segmental lining design. The lack of clear solutions makes the use of segmental lining to be more expensive due to the adoption of greater safety factors. Therefore, a particular attention must be given in order to obtain data from monitored tunnels which permits to validate design methods. In this study, strain measurements, which were conducted during the construction of twin tunnels in the Bologna-Florence railway line, have been presented. The behaviour of segmental lining during the excavation and the influence of a new tunnel excavation on an existing tunnel have been shown through the measured data. The data are then compared with the results obtained with Einstein and Schwartz's method and Duddeck and Erdmann's method, which permits to highlight the fact that the two analytical methods underestimate structural forces induced in the segmental lining and then must be used with caution.

Comparison of Environmental Radiation Survey Analysis Results in a High Dose Rate Environment Using CZT, NaI(Tl), and LaBr3(Ce) Detectors

  • Sungyeop Joung;Wanook Ji;Eunjung Lee;Young-Yong Ji;Yoomi Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.543-558
    • /
    • 2023
  • Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Temperature and Concentration measurement using Semi-conductor diode laser (반도체레이져를 이용한 온도 및 농도의 계측)

  • Chung, D.H.;Noh, D.S.;Ikeda, Yuji
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.168-174
    • /
    • 2000
  • A diode laser sensor system based on absorption spectroscopy techniques has been developed to measure $CO_2$ concentration and temperature non-intrusively in high temperature combustion environments using a 2.0 ${\mu}m$ DFB(Distributed Feedback) laser. Two optics was fabricated in pig-tail fashion and all optical components were implemented in a single box. The evolution of measurement sensitivity was done using test cell by changing sweep frequency and $CO_2$ concentration. Gas temperature was determined from the ratio of integrated line strengths. Species concentration was determined from the integrated line intensity and the measured temperature. The result show that the system has 2% error in wide operation frequency range and accuracy of $CO_2$ concentration was about 3%. The system was applied to measure temperature and concentration in the combustion region of a premixed $CH_4$ +air triangular flame. The measurement results of gas temperature agreed well with thermocouple results. Many considerations were taken into account to reduce optical noise, etalon effect, beam steering and base line matching problem. The evaluations results and actual combustion measurement demonstrate the practical and applicability for in-situ and real time combustion monitoring in a practical system.

  • PDF

Electropolymerization of Pyrrole Applied to Biosystem

  • Lee, Chi-Woo;Yoon, Jung-Hyun;Cho, Hyun-Woo;Bae, Sang-Eun;Lee, Kang-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • We have been investigating electropolymerization of pyrrole in aqueous electrolyte solutions in acidic as well as in neutral conditions by in situ electrochemical quartz crystal oscillator method, where resonant frequency and resonant resistance can be monitored simultaneously with current-voltage measurements during electropolymerization of pyrrole. The properties of thin PPy films prepared on electrode surfaces depended strongly on the experimental variables of electrode potentials applied, solution pH, kinds and quantity of supporting electrolytes, added chemicals, and the mode of electrochemical method employed. We are applying our experience gained on electropolymerization of pyrrole to immobilizing biomolecules onto electrode surfaces to develop a biosensor system. In this work, we wish to present the results on electrochemical monitoring on electropolymerization of pyrrole in the presence of DNA and albumin in different electrochemical conditions. Additionally we will summarize our investigations on the miniaturization of biomolecules/PPy composites by means of scanning tunneling microscopy.

Comparative simulation of microwave probes for plasma density measurement and its application

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Yeong-Seok;Yeom, Hui-Jung;Lee, Ba-Da;Kim, Jeong-Hyeong;O, Wang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.2-185.2
    • /
    • 2016
  • The plasma density is an essential plasma parameter describing plasma physics. Furthermore, it affects the throughput and uniformity of plasma processing (etching, deposition, ashing, etc). Therefore, a novel technique for plasma density measurement has been attracting considerable attention. Microwave probe is a promising diagnostic technique. Various type of cutoff, hairpin, impedance, transmission, and absorption probes have been developed and investigated. Recently, based on the basic type of probes, modified flat probe (curling and multipole probes), have been developing for in situ processing plasma monitoring. There is a need for comparative study between the probes. It can give some hints on choosing the reliable probe and application of the probes. In this presentation, we make attempt of numerical study of different kinds of microwave probes. Characteristics of frequency spectrum from probes were analyzed by using three-dimensional electromagnetic simulation. The plasma density, obtained from the spectrum, was compared with simulation input plasma density. The different microwave probe behavior with changes of plasma density, sheath and pressure were found. To confirm the result experimentally, we performed the comparative experiment between cutoff and hairpin probes. The sheath and collision effects are corrected for each probe. The results were reasonably interpreted based on the above simulation.

  • PDF

Diagnosis and Monitoring of Socket Welded Pipe Damaged by Bending Fatigue Using Acoustic Emission Technique (음향방출법을 이용한 굽힘피로 손상된 소켓용접배관의 진단 및 감시)

  • Kim, C.S.;Oh, S.W.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2008
  • High cycle bending fatigue of socket welded small bore pipe was characterized, and also the fatigue crack initiation of small bore pipe was monitored in situ by the acoustic emission (AE) technique. The STS 316L stainless steel specimens were prepared by gas tungsten arc welding (GTAW) process having the artificial defect (i.e., lack of penetration) and defect free at the root. The fatigue failure was occurred at the loc for high stress and root for relatively low stress. The crack initiation cycles ($N_i$) was defined to the abrupt increase in AE counts during the fatigue test, and then the cracks were observed by the radiographic test and electron microscope before and after the fatigue crack initiation cycles. The socket welded pipe damaged by bending fatigue was studied regarding the welding defect, failure mode, and crack initiation cycles for the diagnosis and monitoring.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

Monitoring of fecal contamination in a partly restored urban stream in Seoul, Korea

  • Seo, Eun-Young;Jung, Dawoon;Yong, Seung-Cheon;Park, Rho Young;Lee, Young-Ok;Ahn, Tae-Seok
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.211-218
    • /
    • 2016
  • Cheonggye-cheon is a partly restored urban stream located in central Seoul. We monitored fecal contamination using three different fecal indicators, total coliforms (TC), fecal coliforms (FC) and E. coli, to assess differences in each indicator on days of varying weather conditions. Presumptive TC, FC and E. coli colonies were identified by their 16S rRNA sequences. The results showed that enumeration of E. coli provided a better reflection of fecal contamination of the stream than TC and FC. The main sources of contamination were the inflow of fecal-polluted groundwater from the vicinity of a subway line and two inflowing streams. The fecal contamination was worsened on days with heavy rain because untreated sewage from a collecting facility flowed into the stream. Moreover, growth potential of fecal indicator (E. coli) in situ induced by algal exudates was measured. Our results suggest that an appropriate standard based on E. coli rather than TC and FC should be established for improving water quality management strategies of Cheonggye-cheon in the future.