• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.024 seconds

TEMPORAL VARIATIONS OF NO2 DISTRIBUTION OVER AN URBAN AREA MEASURED BY IMAGING DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY

  • Lee, Han-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.302-305
    • /
    • 2007
  • During the CareBeijing campaign in September 2006, Imaging Differential Optical Absorption Spectroscopy (IDOAS) measurements were made over the city of Beijing, China using a spatial resolution of 146 pixels horizontally and 61 pixels vertically, each with a field of view of $0.133^{\circ}$ and $0.072^{\circ}$ in the horizontal and vertical directions, respectively. Using Fraunhofer reference spectra (FRS) for the evaluation of data for two consecutive days, the diurnal variation of $NO_2$ distributions was determined from data measured every single hour from 08:00 until 16:00 on September 9 and 10. Both days presented a fairly clear sky with high visibility. The setup allowed detailed images of the low surface $NO_2$ distribution over Beijing. Images with less than a 30-min temporal resolution showed variation of plume dispersal in both horizontal and vertical directions. An in-situ measurement was also conducted. Results from both instruments are interpreted by considering local emission sources and wind conditions.

  • PDF

Behavior of Reinforced Earth Retaining Wall for Permitting Reinforcement to Subside with Monitoring (현장계측을 통한 보강재 침하형 보강토 옹벽의 거동특성)

  • Chung, Jin-Hyuck;Oh, Jong-Keun;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.5-15
    • /
    • 2009
  • The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block. However, this system defect may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall. Hence, the new connector system which was able to allow the settlement of reinforcement was developed in this study and a test was carried out in the study area which is divided into the conventional reinforced earth retaining wall and reinforced Earth Retaining Wall driving the settlement. As the results of field monitoring in situ, the ratio of tensile force calculated at maximum value on contiguous portion of front block showed that the settlement type decreased the stress concentration near the face of front block greater than the conventional type.

Landslide Analysis Using the Wetting-Drying Process-Based Soil-Water Characteristic Curve and Field Monitoring Data (현장 함수비 모니터링과 습윤-건조 함수특성곡선을 이용한 산사태 취약성 분석)

  • Lee, Seong-Cheol;Hong, Moon-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.13-26
    • /
    • 2023
  • This study examined the soil-water characteristic curve (SWCC), considering the volume change, using wetting curves on the field monitoring data of a wireless sensor network. Special attention was given to evaluating the landslide vulnerability by deriving a matric suction suitable for the actual site during the wetting process. Laboratory drying SWCC and shrinkage laboratory tests were used to perform the combined analysis of landslide and debris flow. The results showed that the safety factor of the wetting curve, considering the volume change of soil, was lower than that of the drying curve. As a result of numerical analyses of the debris flow simulation, more debris flow occurred in the wetting curve than in the drying curve. It was also found that the landslide analysis with the drying curve tends to overestimate the actual safety factor with the in situ wetting curve. Finally, it is confirmed that calculating the matric suction through SWCC considering the volume change is more appropriate and reasonable for the field landslide analysis.

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

Vibration measurement and vulnerability analysis of a power plant cooling system

  • Anil, Ozgur;Akbas, Sami Oguzhan;Kantar, Erkan;Gel, A. Cem
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.199-215
    • /
    • 2013
  • During the service life of a structure, design complications and unexpected events may induce unforeseen vibrations. These vibrations can be generated by malfunctioning machinery or machines that are modified or placed without considering the original structural design because of a change in the intended use of the structure. Significant vibrations occurred at a natural gas plant cooling structure during its operation due to cavitation effect within the hydraulic system. This study presents findings obtained from the in-situ vibration measurements and following finite-element analyses of the cooling structure. Comments are made on the updated performance level and damage state of the structure using the results of these measurements and corresponding numerical analyses. An attempt was also made to assess the applicability of traditional displacement-based vulnerability estimation methods in the health monitoring of structures under vibrations with a character different from those due to seismic excitations.

An Analysis for the Stress Redistribution around Tunnel Face Using Three-Dimensional Finite Element Method (3차원 유한요소법을 이용한 터널 막장 주위에서의 응력 재분배 해석에 관한 연구)

  • 문선경;이희근
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.95-103
    • /
    • 1995
  • In this paper the stress redistribution around tunnel face was analyzed by using a three-dimensional finite element model. The effects of in-situ stress levels, excavation sequences, stiffness difference between the hard ground and the weak zone on the stress redistributions were considered. Displacement and stress changes at tunnel crown, side wall, and invert were investigated throughout the sequential excavation. To show ground response, percentage of the displacement and stress variations are used as a function of normalized distance that is between the face and monitoring section. Preceding displacements and stress variations were presented to be adopted in the two-dimensional tunnel analysis.

  • PDF

Hot Spot Analysis on Brake Disc Using Infrared Camera (적외선카메라를 이용한 제동 디스크 열크랙 분석)

  • Kim, Jeong-Guk;Goo, Byeong-Choon;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.964-968
    • /
    • 2008
  • Infrared thermography using high-speed infrared camera has been recognized as a powerful method for various potential applications, such as nondestructive inspection, failure analysis, stress analysis, and medical fields, due to non-contact, high-speed, and high spatial resolution at various temperature ranges. In this investigation, damage evolution due to generation of hot spots on railway brake disc was investigated using the infrared thermography method. A high-speed infrared camera was used to measure the surface temperature of brake disc as well as for in-situ monitoring of hot spot evolution. From the thermographic images, the observed hot spots and thermal damage of railway brake disc during braking operation were qualitatively analyzed. Moreover, in this investigation, the previous experimental and theoretical studies on hot spots phenomenon were reviewed, and the current experimental results were introduced and compared with theoretical prediction.

  • PDF

pH Dependent Size and Size Distribution of Gold Nanoparticles

  • Kang, Aeyeon;Park, Dae Keun;Hyun, Sang Hwa;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.267.2-267.2
    • /
    • 2013
  • In the citrate reduction method of gold nanoparticle (AuNP) synthesis, pH of the reaction mixture can have a considerable impact on the size and size distribution of AuNPs. In this work, effects of pH variation upon the size and its distribution were examined systematically. As the initial pH was change from 5.5 to 10.5, it showed an optimal pH around 7.5. At this pH, both of the size and the size distribution showed their minimum values, which was verified by transmission electron microscopy and UV-vis spectroscopy. This occurrence of optimal pH was discussed with the results of in situ monitoring pH during the reaction of AuNP synthesis.

  • PDF

Prediction of the long-term deformation of high rockfill geostructures using a hybrid back-analysis method

  • Ming Xu;Dehai Jin
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.83-97
    • /
    • 2024
  • It is important to make reasonable prediction about the long-term deformation of high rockfill geostructures. However, the deformation is usually underestimated using the rockfill parameters obtained from laboratory tests due to different size effects, which make it necessary to identify parameters from in-situ monitoring data. This paper proposes a novel hybrid back-analysis method with a modified objective function defined for the time-dependent back-analysis problem. The method consists of two stages. In the first stage, an improved weighted average method is proposed to quickly narrow the search region; while in the second stage, an adaptive response surface method is proposed to iteratively search for the satisfactory solution, with a technique that can adaptively consider the translation, contraction or expansion of the exploration region. The accuracy and computational efficiency of the proposed hybrid back-analysis method is demonstrated by back-analyzing the long-term deformation of two high embankments constructed for airport runways, with the rockfills being modeled by a rheological model considering the influence of stress states on the creep behavior.

Tension Force Monitoring of Tension Type Ground Anchor Using Optical FBG Sensors (광섬유 센서를 이용한 인장형 그라운드 앵커의 장력측정)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.17-26
    • /
    • 2011
  • Ground anchor method is one of the most popular reinforcing technology in Korea. For the sound monitoring of slope reinforced by permanent anchor for a long period, monitoring the tension force of ground anchor is very important. However, special technology except conventional load cell has not been developed for this purpose. In this paper, a new method is described to replace the conventional strain gauge and V.W. type load cell which has been commonly used as a prestress force monitoring tool for a short-term and long-term. Four 11.5 m long strain detectable tension type anchors were made using FBG sensor embedded tendon since FBG sensor is smaller than strain gauge type load cell and does not have noise from electromagnetic wave. Each two set strain detectable tension type anchors were installed into the different ground conditions, i.e., soft rock and weathered granite soil. Prestress force of ground anchor was monitored during the loading-unloading step from in-situ pullout test using proposed FBG sensor embedded in the tendon and the conventional load cell Test results show that the prestress force monitored from FBG sensor may well be used practically, for it almost matches with that measured from expensive load cell.