• 제목/요약/키워드: in situ SEM fracture method

검색결과 3건 처리시간 0.017초

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포 (Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구 (On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester)

  • 최재곤;방문수;한철
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.76-83
    • /
    • 1997
  • 열방성 액정고분자(TLCP)와 폴리(에틸렌 테레프탈레이트)를 혼합용매 중에서 블렌딩하였으며, 이들 블렌드는 capillary rheometer die를 통하여 $287^{\circ}C$에서 섬유상 압출물로 가공되었다. 블렌드와 제조된 복합재료의 열적 성질, 기계적 성질, 모폴로지는 DSC, 편광현미경, SEM 및 인장시험에 의하여 조사되었다. 블렌드의 결정화 동력학은 등온 DSC 방법에 의하여 측정된 데이타로부터 Avrami식을 이용하여 결정화 속도 및 결정성장 메카니즘에 대한 정보를 얻었다. 블렌드내의 액정상은 가공온도조건하에서 거대상분킥나 열분해현상을 보이지 않았으며, 액체질소 속에서 절단된 섬유 단면의 SEM 관찰에 의하면, 섬유내 TLCP domain은 $0.1{\mu}m$에서 $0.2{\mu}m$정도의 크기로 분산되었고, 두 상 계면에서의 접착은 잘 되어있음을 알 수 있었다. TLCP/PET in-situ 섬유상 복합재료의 인장강도와 모듈러스는 TLCP 함량이 많을수록, draw ratio가 높을수록 증가됨을 알 수 있었다.

  • PDF

Dynamic responses of shield tunnel structures with and without secondary lining upon impact by a derailed train

  • Yan, Qixiang;Li, Binjia;Deng, Zhixin;Li, Bin
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.741-750
    • /
    • 2018
  • The aim of this study was to investigate the mechanical responses of a high-speed railway shield tunnel subjected to impact by a derailed train, with emphasis on the protective effect of the secondary lining. To do so, the extended finite element method was used to develop two numerical models of a shield tunnel including joints and joint bolts, one with a cast-in-situ concrete secondary lining and one without such a lining. The dynamic responses of these models upon impact were analyzed, with particular focus on the distribution and propagation of cracks in the lining structures and the mechanical responses of the joint bolts. The numerical results showed that placing a secondary lining significantly constricted the development of cracking in the segmental lining upon the impact load caused by a derailed train, reduced the internal forces on the joint bolts, and enhanced the safety of the segmental lining structure. The outcomes of this study can provide a numerical reference for optimizing the design of shield tunnels under accidental impact loading conditions.