• Title/Summary/Keyword: in silico analysis

Search Result 213, Processing Time 0.028 seconds

Identification and in silico analysis of two types of serpin genes from expressed sequence tags (ESTs) of the Oriental land snail, Nesiohelix samarangae (동양달팽이 (Nesiohelix samarangae) 의 expressed sequence tags (ESTs) 로부터 분리한 2종류의 Serpin 유전자 분석)

  • Park, So Young;Jeong, Ji Eun;Hwang, Hee Ju;Wang, Tae Hun;Park, Eun Bi;Kim, Yong Min;Lee, Jun-Sang;Han, Yeon Soo;Yang, Seung-Ha;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.30 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • Serpins are a group of proteins involved in the regulation of serine and other type of proteases, and have been identified in many kinds of organisms from invertebrates to vertebrates. Serpins are known to regulate the proteolytic cascades of the innate immune pathways in addition to their roles in blood coagulation, angiogenesis, fibrinolysis, inflammation and tumor suppression. In this study, we have isolated two partial serpin gene fragments from expressed sequence tags (ESTs) of Nesiohelix samarangae. Dotplot analysis indicates that they are of two different types, Ns-serpin type 1 and Ns-serpin type 2. Ns-serpin type 1 has 819 bp coding region (272 amino acids), whereas Ns-serpin type 2 has 555 bp coding region (185 amino acids). Molecular phylogenetic analysis shows that the identified serpins have high similarities to their counterparts in the California see slug, Aplysia californica. Yet, the precise biological and immunological roles of these Ns-serpins remain to be further investigated using RNA interference and other molecular techniques.

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis (암 진단 분자 마커로서 이동성 유전인자의 응용)

  • Kim, Hyemin;Gim, Jeong-An;Woo, Hyojeong;Hong, Jeonghyeon;Kim, Jinyeop;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1215-1224
    • /
    • 2017
  • Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.

Sequence Analysis of a Cryptic Plasmid pKW2124 from Weissella cibaria KLC140 and Construction of a Surface Display Vector

  • Kim, Soo Young;Oh, Chang Geun;Lee, Young Joo;Choi, Kyu Ha;Shin, Doo Sik;Lee, Si Kyung;Park, Kab Joo;Shin, Hakdong;Park, Myeong Soo;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.545-554
    • /
    • 2013
  • Plasmid isolation of kimchi-derived Weissella cibaria KLC140 revealed six different plasmids. The smallest plasmid, pKW2124, was DNA sequenced and characterized, showing 2,126 bp with a GC content of 36.39% and five putative open reading frames (ORFs). In silico analysis of these ORFs showed ORF1 encodes a putative replication protein similar to rolling circular replication proteins from other lactic acid bacteria. However, a single-stranded intermediate was not detected when S1 nuclease was treated, suggesting it may follow theta replication. Interestingly, the replication initiation site of this plasmid is 100% identical to other plasmids from lactic acid bacteria, suggesting it may function for replication initiation. To construct a surface layer expression vector, pTSLGFP, slpA encoding the surface layer protein from Lactobacillus acidophilus was PCR amplified and fused with the gfp gene, forming a SLGFP fused gene. The plasmid pKW2124 was cloned into the XbaI site of pUC19, forming an Weissella-E. coli shuttle vector pKUW22. NheI-linearized pTSLGFP was ligated into pKUWCAT containing pKUW22 and the chloramphenicol acetyltransferase gene from pEK104, resulting in an 8.6 kb pKWCSLGFP surface layer expression vector. After transformation of this vector into W. cibaria KLC140, a GFP fluorescence signal was detected on the surface of the transformant, substantiating production of SLGFP fused protein and its secretion. This is the first report for construction of a Weissella surface layer expression vector, which may be useful for surface layer production of beneficial proteins in Weissella.

Anti-inflammatory Activity of Antimicrobial Peptide Protaetiamycine 2 Derived from the Protaetia brevitarsis seulensis (흰점박이꽃무지 유래 항균 펩타이드 프로테티아마이신 2의 항염증활성)

  • Lee, Joon Ha;Baek, Minhee;Lee, Hwa Jeong;Kim, In-Woo;Kim, Sun Young;Seo, Minchul;Kim, Mi-Ae;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1218-1226
    • /
    • 2019
  • The white-spotted flower chafer Protaetia brevitarsis seulensis is a medicinally beneficial and important edible insect species. We previously performed an in silico analysis of the Protaetia brevitarsis seulensis transcriptome to identify putative antimicrobial peptides and then tested their antimicrobial and hemolytic activities. These peptides had potent antimicrobial activities against bacteria and yeast without inducing hemolysis. In the present study, the cationic antimicrobial peptide, protaetiamycine 2, was selected for further assessment of its anti-inflammatory properties in mouse macrophage Raw264.7 cells. Protaetiamycine 2 treatment of Raw264.7 cells suppressed LPS-induced nitric oxide production and reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2, as determined by real-time PCR and western blotting. The expression of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) was also attenuated through the MAPKs and $NF-{\kappa}B$ signaling. We also confirmed that protaetiamycine 2 bound to bacterial cell membranes by a specific interaction with LPS. Collectively, these data obtained from LPS-induced Raw264.7 cells indicated that protaetiamycine 2 could have both antimicrobial and anti-inflammatory properties.

Comparative Genomic Analysis Reveals That the 20K and 38K Prophages in Listeria monocytogenes Serovar 4a Strains Lm850658 and M7 Contribute to Genetic Diversity but Not to Virulence

  • Fang, Chun;Cao, Tong;Shan, Ying;Xia, Ye;Xin, Yongping;Cheng, Changyong;Song, Houhui;Bowman, John;Li, Xiaoliang;Zhou, Xiangyang;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.197-206
    • /
    • 2016
  • Listeria monocytogenes is a foodborne pathogen of considerable genetic diversity with varying pathogenicity. Initially, we found that the strain M7 was far less pathogenic than the strain Lm850658 though both are serovar 4a strains belonging to the lineage III. Comparative genomic approaches were then attempted to decipher the genetic basis that might govern the strain-dependent pathotypes. There are 2,761 coding sequences of 100% nucleotide identity between the two strains, accounting for 95.7% of the total genes in Lm850658 and 92.7% in M7. Lm850658 contains 33 specific genes, including a novel 20K prophage whereas strain M7 has 130 specific genes, including two large prophages (38K and 44K). To examine the roles of these specific prophages in pathogenicity, the 20K and 38K prophages were deleted from their respective strains. There were virtually no differences of pathogenicity between the deletion mutants and their parent strains, although some putative virulent factors like VirB4 are present in the 20K region or holin-lysin in the 38K region. In silico PCR analysis of 29 listeria genomes show that only strain SLCC2540 has the same 18 bp integration hotspot as Lm850658, whereas the sequence identity of their 20K prophages is very low (21.3%). The 38K and 44K prophages are located in two other different hotspots and are conserved in low virulent strains M7, HCC23, and L99. In conclusion, the 20K and 38K prophages of L. monocytogenes serovar 4a strains Lm850658 and M7 are not related to virulence but contribute to genetic diversity.

An Approach to Identify Single Nucleotide Polymorphisms in the Period Circadian Clock 3 (PER3) Gene and Proposed Functional Associations with Exercise Training in a Thoroughbred Horse (국내산 경주마의 주기성 시계 유전자(PER3) SNP 및 운동에 따른 기능적 식별 접근 가능성 제안)

  • Do, Kyoung-Tag;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1304-1310
    • /
    • 2015
  • The period circadian clock gene 3 (PER3) plays a role in the mammalian circadian clocksystem. A regular exercise regime may affect the PER3 transcription in skeletal muscle. Although the effects of day length on circadian and circannual processes are well established in humans and mice, the influence of exercise on these processes in the horse has not been investigated. The present study investigated the expression of the PER3 gene following exercise in a thoroughbred breed of Korean horse. In addition, a comprehensive in silico nonsynonymous single nucleotide polymorphism (nsSNP) analysis of the horse PER3 gene and predicted effects of nsSNPs on proteins were examined. The expression of PER3 in skeletal muscle was significantly upregulated after exercise. Four nsSNPs were functionally annotated and analyzed by computational prediction. The total free energy and RMSD values of PER3 gene showed causative mutations. The results showed that nsSNP s395916798 (G72R) was associated with residues that have stabilizing effects on structure and function of PER3 gene. This study documented role of PER3 gene in phenotypic adaptation related to exercise in skeletal muscle. Further, the SNPs in PER3 could serve as useful biomarkers of early recovery after exercise in racehorses.

Characterization of a non-specific Lipid Transfer Protein (ns-LTP) promoter from poplar (Populus alba × P. glandulosa) (현사시나무(Populus alba × P. glandulosa)에서 분리한 non-specific Lipid Transfer Protein (ns-LTP) 프로모터의 특성 분석)

  • Cho, Jin-Seong;Noh, Seol Ah;Choi, Young-Im
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • In order to study genetic engineering in trees, the characterization of genes and promoters from trees is necessary. We isolated the promoter region (867 bp) of Pagns-LTP from poplar (P. alba ${\times}$ P. glandulosa) and characterized its activity in transgenic poplar plants using a ${\beta}$-glucuronidase (GUS) reporter gene. High-level expression of the Pagns-LTP transcript was found in poplar roots, while comparatively low-level expression was found in the young leaves. Pagns-LTP mRNA was not detected in other poplar tissues. Additionally, transgenic poplar plants that contained a Pagns-LTP promoter fused to a GUS reporter gene, displayed tissue-specific GUS enzyme activity localized in root tissue. In silico analysis of the Pagns-LTP promoter sequence reveals the presence of several cis-regulatory elements responsive to phytohormones, biotic and abiotic stresses, as well as those regulating tissue-specific expression. These results demonstrate that the Pagns-LTP promoter has tissue-specific expression activity in poplar roots and leaves that may be involved in organ development and plant resistance to various stresses. Therefore, we anticipate that the Pagns-LTP promoter would be a useful tool to genetically optimize woody plants for functional genomics.

Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes

  • Lee, Jin Sol;Cheong, Hyun Sub;Kim, Lyoung Hyo;Kim, Ji On;Seo, Doo Won;Kim, Young Hoon;Chung, Myeon Woo;Han, Soon Young;Shin, Hyoung Doo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.479-484
    • /
    • 2013
  • Given the CYP3A4 and CYP3A5's impact on the efficacy of drugs, the genetic backgrounds of individuals and populations are regarded as an important factor to be considered in the prescription of personalized medicine. However, genetic studies with Korean population are relatively scarce compared to those with other populations. In this study, we aimed to identify CYP3A4/5 polymorphisms and compare the genotype distributions among five ethnicities. To identify CYP3A4/5 SNPs, we first performed direct sequencing with 288 DNA samples which consisted of 96 Koreans, 48 European-Americans, 48 African-Americans, 48 Han Chinese, and 48 Japanese. The direct sequencing identified 15 novel SNPs, as well as 42 known polymorphisms. We defined the genotype distributions, and compared the allele frequencies among five ethnicities. The results showed that minor allele frequencies of Korean population were similar with those of the Japanese and Han Chinese populations, whereas there were distinct differences from European-Americans or African-Americans. Among the pharmacogenetic markers, frequencies of $CYP3A4^*1B$ (rs2740574) and $CYP3A5^*3C$ (rs776742) in Asian groups were different from those in other populations. In addition, minor allele frequency of $CYP3A4^*18$ (rs28371759) was the highest in Korean population. Additional in silico analysis predicted that two novel non-synonymous SNPs in CYP3A5 (+27256C>T, P389S and +31546T>G, I488S) could alter protein structure. The frequency distributions of the identified polymorphisms in the present study may contribute to the expansion of pharmacogenetic knowledge.

The Study on Analysis Method and Performance Evaluation of Portable GC/MS (휴대용 GC/MS 성능검사 및 분석방법 연구)

  • Park, Yuonshin;Noh, Hyeran;Yang, Heeseon;Seok, Gwanseol
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.249-258
    • /
    • 2013
  • Recieved Mar. 06, 2013 Revised Mar. 29, 2013 Accepted Sep. 11, 2013In this study, we evaluated the method performance and the optimum sample injection method of the portable GC/MS(HAPSITE) which were designed to operate on scene of chemical accidents. Chemicals used for performance test were vinyl chloride(VC), methyl chloride(MC), benzene(Bz), toluene(Tol). CRM(Certified Reference Material) Manufactured by KRISS(Korea Research Institute of Standards and Science) was used as the standard gas. The results showed that 1) Among three sample injection methods(Cylinder, Silico canister, and Bag), bag was identified as the most appropriate sample injection method. Bag material and capacity did not significantly affect the results. The most ideal reproducibility occurred at the 2-minute point of the purge time in the loop and tenax methods. 2) Performance evaluation of HAPSITE was conducted. Evaluation items were reproducibility, linearity, method detection limit, etc. Tenax concentration method was appropriate for larger molecules and Carbopack concentration method was suitable for smaller molecules.