• Title/Summary/Keyword: in plane performance

Search Result 1,237, Processing Time 0.024 seconds

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Development of the Multi-Parametric Mapping Software Based on Functional Maps to Determine the Clinical Target Volumes (임상표적체적 결정을 위한 기능 영상 기반 생물학적 인자 맵핑 소프트웨어 개발)

  • Park, Ji-Yeon;Jung, Won-Gyun;Lee, Jeong-Woo;Lee, Kyoung-Nam;Ahn, Kook-Jin;Hong, Se-Mie;Juh, Ra-Hyeong;Choe, Bo-Young;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.153-164
    • /
    • 2010
  • To determine the clinical target volumes considering vascularity and cellularity of tumors, the software was developed for mapping of the analyzed biological clinical target volumes on anatomical images using regional cerebral blood volume (rCBV) maps and apparent diffusion coefficient (ADC) maps. The program provides the functions for integrated registrations using mutual information, affine transform and non-rigid registration. The registration accuracy is evaluated by the calculation of the overlapped ratio of segmented bone regions and average distance difference of contours between reference and registered images. The performance of the developed software was tested using multimodal images of a patient who has the residual tumor of high grade gliomas. Registration accuracy of about 74% and average 2.3 mm distance difference were calculated by the evaluation method of bone segmentation and contour extraction. The registration accuracy can be improved as higher as 4% by the manual adjustment functions. Advanced MR images are analyzed using color maps for rCBV maps and quantitative calculation based on region of interest (ROI) for ADC maps. Then, multi-parameters on the same voxels are plotted on plane and constitute the multi-functional parametric maps of which x and y axis representing rCBV and ADC values. According to the distributions of functional parameters, tumor regions showing the higher vascularity and cellularity are categorized according to the criteria corresponding malignant gliomas. Determined volumes reflecting pathological and physiological characteristics of tumors are marked on anatomical images. By applying the multi-functional images, errors arising from using one type of image would be reduced and local regions representing higher probability as tumor cells would be determined for radiation treatment plan. Biological tumor characteristics can be expressed using image registration and multi-functional parametric maps in the developed software. The software can be considered to delineate clinical target volumes using advanced MR images with anatomical images.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.