• Title/Summary/Keyword: impurity treatment

Search Result 103, Processing Time 0.028 seconds

A literature Study on the Application of Sa-am Acupuncture for the Treatment of Hiccup (애역의 사암침법(舍巖鍼法) 활용(活用)에 대(對)한 문헌고찰(文獻考察))

  • Chae, Choong-Heon;Yim, Yun-Kyoung
    • The Journal of Korean Medicine
    • /
    • v.28 no.3 s.71
    • /
    • pp.232-243
    • /
    • 2007
  • Objective : This study researched the application of Sa-am acupuncture for the treatment of hiccup. Methods : We investigated the literature for Sa-am acupuncture treatment and traditional acupuncture treatment for hiccup. Result & Conclusion : In traditional oriental medicine, hiccup is considered to be caused by uprising stomach gi, whereas, in Sa-am acupuncture, it is considered to be caused by weakness and impurity of lung gi. In Sa-am acupuncture, hiccup is divided into five classes; reverse hiccup (treated with large intestine tonification), wind hiccup (treated with liver tonification), fire hiccup (treated with heart tonification), damp hiccup (treated with spleen tonification) and cold hiccup (treated with kidney tonification). In traditional oriental medicine, hiccup is treated by way of lowering the uprising stomach gi, while, in Sa-am acupuncture, hiccup is treated by way of removing whichever of the original cause of hiccups (impurity of large intestine, damage to liver, dry heat of heart, impairment of spleen, exhaustion of kidney) caused the weakness and the impurity of lung gi. In Sa-am acupuncture, the therapeutic mode for all the five causes of hiccups is tonification mode.

  • PDF

An analysis on the impurities generated by discharge in AC plasma display panel (교류 플라즈마 표시기 방전 시 발생하는 불순물 종의 분석)

  • 김광남;김중균;양진호;황기웅;이석현
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.482-489
    • /
    • 1999
  • AC PDP(P1asma Display Pane1)s use the mixture of inert gases to generate a discharge inside the display pixels. Impurities such as CO, $CO_2$ and OH inside discharge region may deteriorate the characteristics of PDP operation during long life time of PDP. Electro-negative gas such as CO can cause the sustain pulse amplitude to rise by attaching electrons which will play an important role in the earlier stage of the discharge. MgO film is used to protect the dielectric layer in AC PDP, and is in contact with the free space of display pixel where it is filled with the inert gas mixture. So, MgO film can be a main source of impurities. In this experiment, we observed the change of impurity generation of various MgO films which were deposited by different methods, by using QMS. (quadropole mass spectrometer) The main impurites were $H_2$, CO and $CO_2$. And with the comparison of the TPD (temperature programmed desorption) result, it can be understood that impurity gases are generated by sputtering of MgO surface not by outgassing. Deposition method had effects on the characteristics of the impurity generation. The MgO film manufactured by e-beam evaporation generated more amount of impurity gases than the MgO films manufactured by sputtering or ion-plating. And also heat treatment of MgO film after deposition decreased the magnitude of impurity gas generation.

  • PDF

Experimental Study on Reduction of Temporal Dark Image Sticking on Bright Screen in AC-PDPs Using RF-Plasma Treatment on MgO layer

  • Park, Choon-Sang;Kim, Jae-Hyun;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.101-103
    • /
    • 2009
  • Minimizing the residual impurity level on the MgO layer is the key factor for reducing temporal dark image sticking on bright screen. In this paper, to reduce the residual impurity level on the MgO layer of 50-in. full-HD ac-PDP with He (35%) - Xe (11%) contents, RF-plasma treatments on the MgO layer are adopted under various gases for plasma treatment. As a result of monitoring the difference in the display luminance between the before and after 5-min. sustain discharge with a square-type image at peak luminance, the Ar and Ar>$O_2$ plasma treatments can reduce the temporal dark image sticking on the bright screen in an ac-PDP.

  • PDF

Analysis of Trace Trichlorosilane in High Purity Silicon Tetrachloride by Near-IR Spectroscopy (근적외선 분광법을 이용한 고순도 SiCI4 중의 미량 불순물 SiHCI3의 분석)

  • Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.87-90
    • /
    • 2002
  • The content of $SiHCl_3$ as a trace impurity in $SiCl_4$ was analyzed by Near IR spectrophotometer with optical fiber. The strong absorption bands of $5345{\sim}5116cm^{-1}$ and $4848{\sim}4349cm^{-1}$ were used for analysis of $SiHCl_3$, and the detection limit of impurity $SiCl_3$ was appeared to be 0.005 % in the spectrum. The quantitative analysis by Near IR spectrophotometry showed the analytical possibility of trace impurity in $SiCl_4$ without sample pre-treatment not only in the laboratory but also in the field.

Analysis and Reduction of Impurity Contamination Induced by Plasma Etching on Si Surface (플라즈마 식각에 의하여 실리콘 표면에 유기된 불순물 오염의 분석 및 제거)

  • Cho, Sun-Hee;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1078-1084
    • /
    • 2006
  • Impurity contamination induced by $CF_4\;and\;HBr/Cl_2/O_2$ plasma etching on Si surface was examined by using surface spectroscopes. XPS(x-ray photoelectron spectroscopy) surface analysis showed that F of 0.4 at % exists in the surface layer in the form of Si-F bonding but Br and Cl are below the detection limit $(0.1{\sim}1.0%)$ of the spectroscope. Static-SIMS(secondary ion mass spectrometry) surface analysis showed that the etched Si surface was contaminated with etching gas elements such as H, F, Cl and Br, and they existed to the depth of about $20{\sim}40nm$. The etched Si surface was treated with three different methods that were HF dip, thermal oxidation followed by HF dip and oxygen-plasma oxidation followed by HF dip. They showed an effect in reducing the impurity contamination and the oxygen-plasma oxidation followed by HF dipping method appears to be a little bit more effective.

Improvement of Fracture Toughness in 7XXX Series Aluminum Alloy Forings (7XXX계 알루미늄합금 단조재의 파괴인성 개선)

  • Song, K.H.;Lee, O.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.200-206
    • /
    • 1998
  • The aim of this study is to investigate the effect of impurity level and fabrication processes on the strength, impact and fracture toughness of 7075, 7050 and 7175 aluminum alloy forgings. A specially processed 7175S-T74 aluminum forgings was superior to a conventionally processed 7075-T73, 7050-T74 and 7175-T74 aluminum forgings in both strength and toughness. The reduction of impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. A further reduction of the amount of second phase particles has been observed by applying a special fabrication process. This phenomena result from the application of intermediate soaking at higher temperature and more sufficiant hot working temperature than that of a conventional processing.

  • PDF

Effect of Characteristic Change in Natural Graphite according to Complex Purification Process on Anode Performance for Lithium Ion Battery (복합 정제 공정에 따른 천연 흑연의 물리화학적 특성 변화가 리튬 이온 전지의 음극재 성능에 미치는 영향)

  • Ahn, Won Jun;Hwang, Jin Ung;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.290-298
    • /
    • 2021
  • A purification process was performed for the application of natural graphite as an anode material. The influence of the structural change and impurity content of graphite according to the process on the anode electrochemical characteristics was investigated. Natural graphite was chemically/physically purified by acid-treatment which used different amounts of solution of ammonium fluoride/sulfuric acid in the same ratio and thermal treatment used different temperatures (800~2500 ℃). Acid-treatment had limitation to remove impurities, and identified that all impurity contents was removed except some traces of atom such as Si by after progressed thermal-treatment until 2500 ℃. The anode materials characteristic of graphite treated by purification process was improved, and changes in the structure and impurity contents affected dominantly the capacity, rate property and initial Coulombic efficiency. Consequently, the complex purification process improved the graphite structure and also the performance of lithium ion battery by controlling the excessive formation of solid electrolyte interphase and expanding Li+ insertion space originated from the effective removal of impurities.

Study on Recycling of Scraps from Process of Silicon-single-crystal for Semiconductor

  • Lee, Sang-Hoon;Lee, Kwan-Hee;Hiroshi Okamoto
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.705-710
    • /
    • 2001
  • So for the quartz-glassy crucible wastes which was used for pulling up silicon-single-crystal ingot have simply reused for refractory raw-materials, or exhausted. This study is concerned on the advanced recycling-technology that is obtained by the proper micro-particle preparation process in order to fabricate fine amorphous silica filler for EMC (Epoxy Molding Compound). Therefore, this paper will deal with the physical, chemical and thermal pre-treatment process for efficient impurity removal and with the proper micro-particle process for producing the amorphous silicafiller. In view of the results, if the chemical, physical and thermal pre-treatment process for efficient elimination of impurity was passed, the purity of wasted fused glassy crucible is almost equal to the its of first anhydrous quartz glass. Thus, it was understood that this wasted fused glassy crucible was sufficient value of recycling, though it was damaged. When the ingot was fabricated, Phase transformation of crystallization by heat treatment (heat hysteresis phenomenon) was not changed. So, it was understood that as fused silica in the amorphous state, as It is, recycling possibility was very high

  • PDF

EFFECT OF IMPURITIES ON THE MICROSTRUCTURE OF DUPIC FUEL PELLETS USING THE SIMFUEL TECHNIQUE

  • Park, Geun-Il;Lee, Jae-Won;Lee, Jung-Won;Lee, Young-Woo;Song, Kee-Chan
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • The influence of fission products' contents on the DUPIC fuel powder and pellet properties was experimentally evaluated using SIMFUEL as a surrogate for actual spent PWR fuel due to the high radioactivity of spent fuel. Pure $UO_2$ and SIMFUEL pellets with fission products equivalent to a burn-up of 35,000 MWd/tU and 60,000 MWd/tU were used as impurities in this study. The specific surface area of the powder milled after the OREOX treatment increased and resulted in sintered pellets with a theoretical density (TD) higher than 95%, regardless of the impurity contents. However, the grain size of the sintered pellets decreased with the increasing impurity contents. As a result of the dissolved oxides in $UO_2$ from the impurity groups, the specific surface area of the OREOX powder increased with an increase of the impurities. The grain size of the sintered pellets was significantly decreased by the metallic and oxide precipitates.