• 제목/요약/키워드: impurities

검색결과 1,341건 처리시간 0.028초

Evaluation of Effects of Impurities on Insulating Properties of Polymeric Insulator in Power Distribution Cable (배전케이블내 고분자 절연체의 절연성능에 미치는 불순물의 영향평가)

  • Cho, Young-Shin;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1402-1404
    • /
    • 1997
  • To evaluate the effects of impurities on insulating properties of polymeric insulator in high electric power distribution cable, OIT and OMT were measured. By using Eyring plot, the thermodynamic parameters of ${\Delta}H$ and ${\Delta}S$ could be obtained.

  • PDF

Diffusion of Impurities Into Silicon by Spin-on Sources (Spin-On source에 의한 실리콘내의 불순물 확산)

  • 김충기;정태원
    • 전기의세계
    • /
    • 제27권6호
    • /
    • pp.69-75
    • /
    • 1978
  • Diffusion processes of boron, phosphorus, and arsenic into silicon have been investigated using a new diffusion source called "spin-on source". Diffusion coefficients of these impurities have been calculated from the experimental results and are compared with the published values. Reasonable agreements have been found between the calculated and the published values. From this study, it is concluded that the spin-on source can be used as the diffusion source for integrated circuit fabricaticon.ricaticon.

  • PDF

Intermode Space Charge Fields in Photorefractive Material with Two Impurities for Volume Holographic Interconnections (두 종류의 불순물을 가진 광굴절 물질의 체적 홀로그램 광연결에서 생기는 모드간 공간 전하 필드)

  • Hwang, Byeong-Joon;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.666-669
    • /
    • 1993
  • The space charge fields, including intermode apace charge fields in photorefractive material with two impurities are obtained for the small light intensity at large modulation depth, and their implication of high-capacity volume holographic interconnection are presented. In the following data regions the effect of intermode space charge fields are suppresed and the criteria for optimal implementation of volume holographic interconnections are satisfied.

  • PDF

Electronic Band Structure of N and P Dopants in Diamond

  • 강대복
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권6호
    • /
    • pp.628-634
    • /
    • 1998
  • The properties of the n-type impurities nitrogen and phosphorus in diamond have been investigated by means of electronic band structure calculations within the framework of the semiempirical extended Huckel tight-binding method. For diamond with the nitrogen and phosphorus substitutional impurities, calculated density of states shows the impurity level deep in the band gap. This property can be derived from the substantial <111> relaxation of the impurity and nearest-neighbor carbon atoms, which is associated with the population of an antibonding orbital between them. The passivated donor property of the P-vacancy complex which lies deep in the gap is also discussed.

Cr, Ni and Cu removal from Si wafer by remote plasma-excited hydrogen (리모트 수소 플라즈마를 이용한 Si 웨이퍼 위의 Cr, Ni 및 Cu 불순물 제거)

  • 이성욱;이종무
    • Journal of the Korean Vacuum Society
    • /
    • 제10권2호
    • /
    • pp.267-274
    • /
    • 2001
  • Removal of Cr, Ni and Cu impurities on Si surfaces using remote plasma-excited hydrogen was investigated. Si surfaces were contaminated intentionally by acetone with low purity. To determine the optimum process condition, remote plasma-excited hydrogen cleaning was conducted for various rf-powers and plasma exposure times. After remote plasma-excited hydrogen cleaning, Si surfaces were analyzed by Total X-ray Reflection Fluorescence(TXRF), Surface Photovoltage(SPV) and Atomic Forece Microscope(AFM). The concentrations of Cr, Ni and Cu impurities were reduced and the minority carrier lifetime increased after remote plasma-excited hydrogen. Also RMS roughness decreased by more than 30% after remote plasma-excited hydrogen cleaning. AFM analysis results also show that remote plasma-excited hydrogen cleaning causes no damage to the Si surface. TXRF analysis results show that remote plasma-excited hydrogen cleaning is effective in eliminating metallic impurities from Si surface only if it is performed under an optimum process conditions. The removal mechanism of the Cr, Ni and Cu impurities using remote plasma-excited hydrogen treatments is proposed to be the lift-off during removal of underlying chemical oxides.

  • PDF

Identification and Toxic effects of Impurities present in the Technical grade of Phosalone (유기인계 살충제 Phosalone 원제 중의 불순물 동정 및 독성효과)

  • Lim, Geum-Choon;Hur, Jang-Hyun;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • 제14권2호
    • /
    • pp.171-178
    • /
    • 1995
  • The purpose of this study was to investigate the identification and the toxicological effects of some impurities present in the technical grade phosalone (94.4%). In instrumental analyses of the technical phosalone, the five impurities such as phosalone oxon, 6-chloro-3-methylthio-2-oxobenzoxazole, 6-chloro-2-oxobenzoxazole, O,O,S-triethyl phosphorodithioate (OOSTEPDT) and dichlorophosalone were identified. The bimolecular inhibition rate constants ($k_i$) indicated that the technical phosalone inhibited both AChE and BuChE about ten times faster than the purified phosalone did. From in vivo studies the technical phosalone showed greater inhibition for mouse brain AChE, rat blood ChE's and mouse cytosolic non-specific esterases. It was presumed that some impurities present in the technical phosalone such as phosalone oxon cause such inhibition patterns of the technical phosalone observed in this study.

  • PDF

Installation and Test Run of Comprehensive Analysis System for SF6 in Power Equipment

  • Lee, Jeong Eun;Kim, Kwang Sin;Kim, Ah Reum;Park, Seoksoon;Kim, Kyeongsook
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제3권1호
    • /
    • pp.41-47
    • /
    • 2017
  • After $SF_6$, which is being used in power equipment as an insulating material, is classified as one of the 6 major greenhouse gases, the maintenance and the refinement of used $SF_6$ started to get attention. In regard to this, KEPCO Research Institute (KEPRI) is developing $SF_6$ recovery and refinement technology starting with establishing a comprehensive $SF_6$ analysis system. With the analysis system, qualitative and quantitative analyses of the purity and the impurities of $SF_6$ before and after recovery, and before and after refinement have been carried out. The analysis system is comprised of GC-DID (Gas Chromatograph -Discharge Ionization Detector) for trace impurities analysis, GC-TCD (Thermal Conductivity Detector) for analyses of $SF_6$ purity and major impurities concentration from several hundred ppm up to percent range, GC-MSD (Mass Selective Detector) for analyses of impurities not included in standard gas, FT-IR (Fourier Transform-Infrared) Spectrometer for analysis of HF and $SO_2$, and moisture analyzer for analysis of moisture below 100 ppm. With this analysis system, complete analysis method of $SF_6$ has been established. This analysis system is being used in the maintenance of power equipment and the development of $SF_6$ recovery and refinement technologies. In this paper, the analysis results of four samples - gas and liquid phase $SF_6$ samples from a $SF_6$ refinement system before and after refinement are presented.

Removal and Decomposition of Impurities in Wastewater From the HyBRID Decontamination Process of the Primary System in a Nuclear Power Plant (원전 일차계통 HyBRID 제염공정 발생 폐액 내 불순물 제거 및 분해)

  • Eun, Hee-Chul;Jung, Jun-Young;Park, Sang-Yoon;Park, Jeong-Sun;Chang, Na-On;Won, Hui-Jun;Sim, Ji-Hyoung;Kim, Seon-Byeong;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제17권4호
    • /
    • pp.429-435
    • /
    • 2019
  • Decontamination wastewater generated from the HyBRID decontamination process of the primary system in a nuclear power plant contains impurities such as sulfate ions, metal ions containing radioactive nuclides, and hydrazine (carcinogenic agent). For this reason, it is necessary to develop a technology to remove these impurities from the wastewater to a safe level. In this study, it has been conducted to remove the impurities using a decontamination wastewater surrogate, and a treatment process of the HyBRID decontamination wastewater has been established. The performance and applicability of the treatment process have been verified through 1 L scale of replicates and a pilot scale (300 L/batch) test.

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • 제47권1호
    • /
    • pp.26-38
    • /
    • 2010
  • Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

The Performance Degradation of PEMFCs Fabricated with Different GDLs During Exposure to Simultaneous Sulfur Impurity Poisoning Condition (서로 다른 GDL을 이용한 고분자전해질 막 연료전지의 황불순물 복합피독에 의한 성능 저하)

  • Lee, Soo;Kim, Jae-Hyun;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • 제30권1호
    • /
    • pp.146-151
    • /
    • 2013
  • This paper reveals the performance decrease and recovery of PEMFC when the contaminated fuel gas and air source with sulfur impurities such as hydrogen sulfide and sulfur dioxide were simultaneously introduced to anode and cathode, respectively. Three different GDLs were fabricated with different carbon black and activated carbon to prevent an introduction of sulfur compound impurities into MEA. components. The severity of $SO_2$ and $H_2S$ poisoning was depended on concentrations(3 ppm - 10 ppm) of sulfur impurities. Especially, cell performance degradation rate was rapid when MEA fabricated with CN-2 GDL because it had little porosity on GDL surface. Moreover, the cell performance can be recovered up to 90%-95% only with neat hydrogen and fresh air feeding.. Conclusively, MEA fabricated with porous CN-1 GDL showed the best cell performance and recovery efficiency during exposure to poisoning condition by simultaneous sulfur impurities.