• Title/Summary/Keyword: impulsive load

Search Result 57, Processing Time 0.024 seconds

취성재료의 충격파괴에 관한 연구 I

  • 양인영;정태권;정낙규;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.298-309
    • /
    • 1990
  • In this paper, a new method is suggested to analyze impulsive stresses at loading poing of concentrated impact load under certain impact conditions determined by impact velocity, stiffness of plate and mass of impact body, etc. The impulsive stresses are analyzed by using the three dimensional dynamic theory of elasticity so as to analytically clarify the generation phenomenon of cone crack at the impact fracture of fragile materials (to be discussed if the second paper). The Lagrange's plate theory and Hertz's law of contact theory are used for the analysis of impact load, and the approximate equation of impact load is suggested to analyze the impulsive stresses at the impact point to decide the ranage of impact load factor. When impact load factors are over and under 0.263, approximate equations are suggested to be F(t)=Aexp(-Bt)sinCt and F(t)=Aexp(-bt) {1-exp(Ct)} respectively. Also, the inverse Laplace transformation is done by using the F.F.T.(fast fourier transform) algorithm. And in order to clarity the validity of stress analysis method, experiments on strain fluctuation at impact point are performed on a supported square glass plate. Finally, these analytical results are shown to be in close agreement with experimental results.

Damage Curves of the Simple Beam under the Impulsive loadings (충격하중에 의한 단순보의 손상곡선)

  • Lee, Sang-Ho;Ryu, Yong-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.157-164
    • /
    • 2004
  • The safety criteria for the simple beam with a rigid-plastic model under the impulsive loadings are established with the peak-load ratio to the static collapse load and impulse ratio to the ideal impulse producing the plastic hinge at the mid-span. It is shown that the impulse and peak-load of the impulsive loadings are the important factors for the damage of the structures. It is also shown that the damage curves with the peak-load and impulse ratio may be useful method to estimate the damage of the structures due to the emphasis on the equivalent dynamic loads rather than the equivalent static loads in the process of deriving the curve.

Motion Blur reduction based on Motion Compensation

  • Park, Jae-Hyeung;Kim, Yun-Jae;Park, Min-Kyu;Amino, Tadashi;Oh, Jae-Ho;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.413-416
    • /
    • 2007
  • Motion-estimation/motion-compensation (ME/MC) provides superior motion picture quality but its huge computation load results in high cost. Impulsive driving is a cost-effective solution but it suffers from large flicker and brightness loss. Motion compensated impulsive driving technology has been developed to achieve high motion picture quality in a cost-effective implementation by combining ME/MC and impulsive driving. The key idea is to apply ME/MC or impulsive driving selectively according to the motion vector distribution of the incoming image sequence. In this paper, the description of the algorithm and the experimental results are provided.

  • PDF

Analytical Closed Form Solution for the Impact Load of a Collision between Rigid Bodies and its Application to a Spent Nuclear Fuel Disposal Canister Accidentally Dropped and Impacted on the Ground: Application(Numerical Analysis) (강체간의 충돌에 의한 충격력에 대한 수학적 정해 및 고준위폐기물 처분용기의 지면 추락낙하사고 시의 충돌충격에의 응용: 적용(수치해석))

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.451-457
    • /
    • 2015
  • This paper presents the analytical closed form solution for the impact load of a collision between rigid bodies and its application to a spent nuclear fuel disposal canister accidentally dropped and impacted on the ground. This paper performed a study on the numerical rigid body dynamic analysis to compute the impact load between two rigid bodies, especially, the impulsive force which is applied to the spent nuclear fuel disposal canister in the accidental drop and impact event on the ground. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact event on the ground and required in the process of structural safety design of the canister is computed numerically. The main content of this numerical study is about the technical method how to compute the impulsive force applied to the canister under the accidental drop and impact event on the ground by using the commercial computer code for the rigid body dynamic analysis. On the basis of this study a problem to compute the impulsive force which is occurring in the canister in the case of collision with the ground is numerically treated. This numerically computed impulsive force is compared with the theoretical value, which shows a good agreement.

Damage Curves of the Fixed Ends Beam with the Rigid-Plastic Model (강-소성 모델을 이용한 양단 고정보의 손상곡선)

  • Kim, Seok Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.239-246
    • /
    • 2004
  • The fixed ends beam is analyzed by the s d 0 f system with the rigid-plastic model. And the safety criteria of the fixed ends beam to the Impulsive loads are established with the peak-load ratio to the static collapse load and impulse ratio to the ideal impulse producing the critical displacement. It is shown that the impulse and the peak-load of the impulsive loads are the important factors for the damage of the structures. It is also shown that the damage curves with the peak-load and impulse ratio are useful method to estimate the damage of the structures due to the emphasis on the equivalent dynamic loads rather than the equivalent static loads in the process of deriving the curve.

충격하중을 받는 유한평판의 3차원 동탄성이론에 의한 응력해석

  • 양인영;김선규;박정수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.51-64
    • /
    • 1991
  • In this paper, an attempt is made to analyze the impulsive stress directly underneath the concentrated impact point for a supported square plate by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement (stress function) on the supposition that the load, F$_{*}$0 sin .omega.t, acted on the central part of it. The results obtained from this study are as follows: 1. The impulsive stress cannot be analyzed directly underneath the acting point of concenrated impact load in privious theories, but can be analyzed by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement. 2. Theorically, with increasing the pulse width of applied load, it was possible to clarify that the amount of stress in the point of concentrated impact load was increased and that of stress per unit impulse was decreased. 3. The numerical inversion of laplace transformation by the use of the F.F.T algorithm contributes the reduction of C.P.U time and the improvement of the accuracy or results. 4. In this paper recommended, it is found that the approximate equation of impact load function P (.tau.) = A.tau. exp (-B.tau.), and P (.tau.) =0.85A exp (-B.tau.) sinC.tau. could actually apply to all impact problem. In compared with the experimental results, the propriety of the analytical method is reasonable.

  • PDF

A Study on the Impulsive Response of Fragile Meterials Based on an Analytical Study of Impulsive Stresses in a Square Glass Plate (脆性材料의 衝擊應答에 관한 硏究)

  • 양동율;김기환;양인영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.481-488
    • /
    • 1988
  • In the analysis of impulsive response of plate, Lagrange's theory, Reissner's theory and Mindlin's theory are generally used. But, in applying these theories the impulsive stresses directly underneath the concentrated impact point cannot be analyzed because the solution fails to converge. In this paper, therefore, an attempt for a supported square plate is made by using three-dimensional dynamic theory of elasticity on the supposition that the uniform distributed load acts on the central part of it. In order to clarify the validity of theoretical analysis, the strain variations are measured experimentally for a square glass plate. Finally it is shown that these theoretical results are in close agreement with the experimental results.

A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique (재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF

Seismic Design Force for Rectangular Water Tank with Flexible Walls (유연한 벽면을 가진 사각형 물탱크의 설계지진력 산정)

  • Kim, Min Woo;Yu, Eunjong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.303-310
    • /
    • 2023
  • The equivalent static load for non-structural elements has a limitation in that the sloshing effect and the interaction between the fluid and the water tank cannot be considered. In this study, the equations to evaluate the impulse and convective components in the design codes and previous research were compared with the shaking table test results of a rectangular water tank with flexible wall panels. The conclusions of this study can be summarized as follows: (1) It was observed that the natural periods of the impulsive component according to ACI 350.3 were longer than system identification results. Thus, ACI 350.3 may underestimate the earthquake load in the case of water tanks with flexible walls. (2) In the case of water tanks with flexible walls, the side walls deform due to bending of the front and back walls. When such three-dimensional fluid-structure interaction was included, the natural period of the impulsive component became similar to the experimental results. (3) When a detailed finite element (FE) model of the water tank was unavailable, the assumption Sai = SDS could be used, resulting in a reasonably conservative design earthquake load.

Experimental investigation of slamming impact acted on flat bottom bodies and cumulative damage

  • Shin, Hyunkyoung;Seo, Byoungcheon;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.294-306
    • /
    • 2018
  • Most offshore structures including offshore wind turbines, ships, etc. suffer from the impulsive pressure loads due to slamming phenomena in rough waves. The effects of elasticity & plasticity on such slamming loads are investigated through wet free drop test results of several steel unstiffened flat bottom bodies in the rectangular water tank. Also, their cumulative deformations by consecutively repetitive free drops from 1000 mm to 2000 mm in height are measured.