• 제목/요약/키워드: impulse response method

Search Result 379, Processing Time 1.069 seconds

Identification of 2D Impulse Response by use of M-array with Application to 2D M-transform

  • Liu, Min;Kashiwagi, Hiroshi;Kobatake, Hidefumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.234-237
    • /
    • 1999
  • In this paper, a new method for identification of two-dimensional(2D) impulse response is presented. As is well known, identification of 2D impulse response is an important and necessary theme for image processing or signal processing. Here, the authors extend M-transform which has been proposed by some of the authors to 2D case where an image is used instead of signal, and M-array is used instead of M-sequence. Firstly, we show that 2D impulse response can be obtained by use of M-array. Next 2D M-transform is defined where any 2D image can be considered to be the output of 2D filter whose input is 2D M-array. Simulation results show the effectiveness of identification of 2D impulse response by either using M-array or by 2D M-transform.

  • PDF

A Study of Response Characteristics for the Interior Impulse Noise based on Interpreted Models (해석 모델 기반의 실내 충격소음 응답특성에 관한 연구)

  • Song, Kee-Hyeok;Chung, Sung-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.22-28
    • /
    • 2014
  • This study is compare to model-based analysis and experimental data of the response characteristic of interior impulse noise. Interior impulse noise and the pressure response characteristics of the building structure on its analysis are presented the impulse pressure acting on the rear wall 90 N-sec. The force acting on the wall $CFD^{{+}{+}}$ which are compared measurement and simulation analysis. Results of simulation and measurement data were shown. In this study, a high dimension of the degree of virtual space in the numerical space of the lesser degree in order to calculate folding method was applied. The results of this study contribute safety evaluation and model development for the interior impulse noise that affects the basic data for the interior impulse noise model validate for the physical quantity prediction.

Identification of Dynamic Characteristics of Gimbals for Line-of-Sight Stabilization Using Signal Compression Method (신호 압축법을 이용한 시선안정화 제어용 짐벌의 동특성 규명)

  • Kim, Moon-Sik;Yoo, Gi-Sung;Yun, Jung-Joo;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.72-78
    • /
    • 2008
  • The line-of-sight(LOS) stabilization system is a precision electro-mechanical gimbals assembly for suppressing vibration due to its environment and tracking the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. The controller consists of a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated by the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. The quasi-impulse response through linear element included in the gimbals could be obtained by the signal compression method. The unknown parameter of the linear element could be estimated as comparing the bode plots for impulse response from gimbals with them from model's response.

Application of wavelet transform for the impulse response of pile

  • Ni, Sheng-Huoo;Yang, Yu-Zhang;Lyu, Chia-Rong
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.513-521
    • /
    • 2017
  • The purpose of this paper is to study the capabilities of the impulse response method in length and flaw detecting for concrete piles and provide a suggested method to find small-size flaws in piles. In this work, wavelet transform is used to decompose the recorded time domain signal into a series of levels. These levels are narrowband, so the mix of different dominant bandwidths can be avoided. In this study, the impulse response method is used to analyze the signal obtained from the wavelet transform to improve the judgment of the flaw signal so as to detect the flaw location. This study provides a new way of thinking in non-destructive testing detection. The results show that the length of a pile is easy to be detected in the traditional reflection time or frequency domain method. However, the small flaws within pile are difficult to be found using these methods. The proposed approach in this paper is able to greatly improve the results of small-size flaw detection within piles by reducing the effects of any noise and clarifying the signal in the frequency domains.

Beat Map of King Song-Dok Bell (성덕대왕신종의 맥놀이 지도)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.1-353
    • /
    • 2002
  • Impulse response of a slightly asymmetric cylindrical shell is derived. Receptance method is applied to obtain the vibration mode and natural frequency of the slightly asymmetric cylindrical shell. Impulse response model is used to identify the vibration beat characteristics of King Song-Dok Bell. The theretical mode is compared and verified by the measured mode of King Song-Dok Bell. (omitted)

  • PDF

An Enhancement of Multi-Dof Frequency Response Spectrum From Impact Hammer Testing (충격햄머 실험에서 다자유도 주파수 응답스팩트럼의 개선)

  • Ahn, Se-Jin;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.623-629
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

  • PDF

Study of Spectral Factorization using Circulant Matrix Factorization to Design the FIR/IIR Lattice Filters (FIR/IIR Lattice 필터의 설계를 위한 Circulant Matrix Factorization을 사용한 Spectral Factorization에 관한 연구)

  • 김상태;박종원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.437-447
    • /
    • 2003
  • We propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used fur spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR Inter and for the case of the IIR filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

MEASUREMENT OF LONG IMPULSE RESPONSE BY USING A TIME-STRETCHED PULSE

  • Kim, Hack-Yoon;Asano, Futoshi;Suzuki, Yoiti;Sone, Toshio
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.867-872
    • /
    • 1994
  • The transfer function of an acoustic system, in general, often exhibits a wide dynamic range and a very long impulse response. The time-stretched pulse (TSP) proposed by Aoshima (ATSP) has a small peak-factor and is accordingly suitable for the measuring impulse responses. The pulse is not so suitable, however, for the measurement of impulse responses over a wide frequency range. In this paper, we try to generalize and optimize this method (OATSP). This makes the method applicable for measuring of impulse responses longer than the length of the TSP. An analysis of error in such a case is also shown. Finally, we discuss how to implement this technique in specific measurement conditins.

  • PDF

Estimation unknown parameter of 2nd order circuits using LabVIEW (LabVIEW를 이용한 2차 회로의 미지 파라미터 추정)

  • 윤정주;이민철;이승희;고석조;이영진;안철기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1131-1134
    • /
    • 2003
  • Unknown parameters of a nonlinear system were estimated using a signal compression method. The estimated parameters were natural frequency and tile damping coefficient. This study applied a algorithm using tile comparison of the cross-correlation coefficient between the impulse response from a model and it from the signal compression method. The impulse through linear element included in a nonlinear system could be obtained by the signal compression method. The unknown parameters of the linear element could be estimated by comparing the Bode plots of system's impulse response with them of model's response. In this study, a LSCM(LabVIEW-Signal-Compression-Method) was developed to identify a nonlinear system. The LSCM consisted of National Instrument's (NI) Data Acquisition (DAQ) Board (Model PCI-1200), a monitoring program using LabVIEW software package, DAQ Signal Accessory Board, and 2nd-order electric circuits. The designed electric circuits consisted of resistors, inductors and capacitors. To evaluate the performance of the LSCM, the response from model with known parameters is compared with the response from the real system using the monitoring program. The results from simulation of experiment showed that the developed LSCM provided a reliable estimation performance.

  • PDF

An effective channel estimation method considering channel response length in OFDM systems (OFDM에서 채널 응답 길이를 고려한 효율적인 채널추정 방법)

  • Jeon Hyoung-Goo;Choi Won-Chul;Lee Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.755-761
    • /
    • 2005
  • In this paper, we proposed a channel estimation method by impulse signal train in OFDM. In order to estimate the channel response, 4 impulse signals are generated and transmitted during one OFDM (Orthogonal Frequency Division Multiplexing) symbol. The intervals between the impulse signals are all equal in time domain. At the receiver, the impulse response signals are summed and averaged. And then, the averaged impulse response signal is zero padded and fast Fourier transformed to obtain the channel estimation. The BER performance of the proposed method is compared with those of conventional estimation method using the long training sequence in fast fading environments. The simulation results show that the proposed method improves by 3 dB in terms of Eb/No, compared with the conventional method.