• Title/Summary/Keyword: impulse ground penetrating radar (GPR)

Search Result 9, Processing Time 0.022 seconds

Antipersonnel Landmine Detection Using Ground Penetrating Radar

  • Shrestha, Shanker-Man;Arai, Ikuo;Tomizawa, Yoshiyuki;Gotoh, Shinji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1064-1066
    • /
    • 2003
  • In this paper, ground penetrating radar (GPR), which has the capability to detect non metal and plastic mines, is proposed to detect and discriminate antipersonnel (AP) landmines. The time domain GPR - Impulse radar and frequency domain GPR - SFCW (Stepped Frequency Continuous Wave) radar is utilized for metal and non-metal landmine detection and its performance is investigated. Since signal processing is vital for target reorganization and clutter rejection, we implemented the MUSIC (Multiple Signal Classification) algorithm for the signal processing of SFCW radar data and SAR (Synthetic Aperture Radar) processing method for the signal processing of Impulse radar data.

  • PDF

A Study on Design and Fabrication of SRD Impulse Generator and Antenna for Ground Penetrating Radar System (지반투과 레이더 시스템을 위한 SRD 임펄스 발생기 및 안테나의 설계 및 제작에 관한 연구)

  • Kim, Hyoung-Jong;Shin, Suk-Woo;Choi, Gil-Wong;Choi, Jin-Joo;Shin, Shang-Youal
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • In this paper, a ground penetrating radar(GPR) system is implemented for landmine detection. The performance of the GPR system is associated with the characteristics of local soil and buried target. The choice of the center frequency and the bandwidth of the GPR system are the key factors in the GPR system design. To detect a small and shallow target, the higher frequencies are needed for high depth resolution. We have been designed, fabricated and tested a new impulse generator using step recovery diodes. The measured impulse response has an amplitude of 6.2V and a pulse width of 250ps. The implemented GPR system has been tested real environmental conditions and has proved its ability to detect a small buried target.

High resolution groud penetrating image radar using an ultra wideband (UWB) impulse waveform (초광대역 임펄스를 이용한 고해상도 지반탐사 이미지 레이더)

  • Park Young-Jin;Kim Kwan-Ho;Lee Won-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.101-106
    • /
    • 2005
  • A ground penetrating image radar (GPR) using an ultra wideband (UWB)impulse waveform is developed for non destructive detection of metallic pipelines buried under the ground. Dielectric constant of test field is measured and then a GPR system is designed for better detection up to 1 meter deep. By considering total path loss, volume of complete system, and resolution, upper and lower frequencies are chosen. First, a UWB impulse for the frequency bandwidth of the impulse is chosen with rising time less than 1 ns, and then compact planar UWB dipole antenna suitable for frequency bandwidth of a UWB impulse is designed. Also, to receive reflected signals, a digital storage oscilloscope is used. For measurement, a monostatic technique and a migration technique are used. For visualizing underground targets, simple image processing techniques of A-scan removal and B-scan average removal are applied. The prototype of the system is tested on a test field in wet clay soil and it is shown that the developed system has a good ability in detecting underground metal objects, even small targets of several centimeters.

A Study on the Selection of GPR Type Suitable for Road Cavity Detection (도로동공 탐지에 적합한 GPR 타입 선정에 관한 연구)

  • Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Deok;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.69-75
    • /
    • 2017
  • PURPOSES : The purpose of this study is to evaluate different types of Ground Penetrating Radar (GPR) testing for characterizing the road cavity detection. The impulse and step-frequency-type GPR tests were conducted on a full-scale testbed with an artificial void installation. After analyzing the response signals of GPR tests for detecting the road cavity, the characteristics of each GPR response was evaluated for a suitable selection of GPR tests. METHODS : Two different types of GPR tests were performed to estimate the limitation and accuracy for detecting the cavities underneath the asphalt pavement. The GPR signal responses were obtained from the testbed with different cavity sizes and depths. The detection limitation was identified by a signal penetration depth at a given cavity for impulse and step-frequency-type GPR testing. The unique signal characteristics was also observed at cavity sections. RESULTS : The impulse-type GPR detected the 500-mm length of cavity at a depth of 1.0 m, and the step-frequency-type GPR detected the cavity up to 1.5 m. This indicates that the detection capacity of the step-frequency type is better than the impulse type. The step-frequency GPR testing also can reflect the howling phenomena that can more accurately determine the cavity. CONCLUSIONS :It is found from this study that the step-frequency GPR testing is more suitable for the road cavity detection of asphalt pavement. The use of step-frequency GPR testing shows a distinct image at the cavity occurrences.

Ground Penetrating Radar System for Landmine Detection Using 48 Channel UWB Impulse Radar (지뢰탐지용 48채널 배열 UWB 임펄스 레이더 방식 지면투과레이더시스템 개발)

  • Kwon, Ji-Hoon;Kwak, No-Jun;Ha, Seoung-Jae;Han, Seung-Hoon;Yoon, Yeo-Sun;Yang, DongWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.3-12
    • /
    • 2016
  • This paper describes the development of the ground penetrating radar (GPR) system using UWB impulse radar with 48 Channel array. GPR is an effective alternative technology to resolve th disadvantages of metal detectors. Metal detectors have a very low detection probability of non-metallic landmine and high false alarm rates caused by metallic materials under the ground. In this paper, we use the mono-cycle pulse waveform with about 600 ps pulse width to obtain high resolution landmine microwave images. In order to analyze performances of this system, we utilize indoor test facility that made up of rough sandy loam which representative Korean soil. The mimic landmine models of metal/non-metal and anti-tank/anti-personnel landmines buried in DMZ (demilitarized zone) of Korea are used to analyze the detection depth and the shape of the mines using microwave image.

Influence of lossy ground on impulse propagation in time domain for impulse ground penetrating radar (초광대역 임펄스 지반탐사레이더에서 지면의 영향에 따른 임펄스 전파 특성 연구)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper, influence of lossy ground and gap variation between lossy ground and UWB antenna on impulse propagation in time domain for impulse ground penetrating radar (GPR) is numerically and experimentally investigated. For this study, a novel planar UWB fat dipole antenna is developed. First, influence of lossy ground and gap variation between lossy ground and UWB antenna is simulated. For verification, a test field of sand and wet clay soil is built and using the developed dipole antenna, transmission behavior is investigated at the test field. With an aid of IDFT (inverse discrete Fourier transform), time domain impulse response for transmission coefficient measured and simulated in frequency domain is obtained. Measurement and simulation show that the frequency of maximum transmission coefficient and transmission coefficient are increased with higher dielectric constant and larger gap distance. In time domain, it is shown that for higher dielectric constant, the amplitude of the received signal in time domain is higher and reflected signals are seriously modified. Also, it is found that variation of gap between antenna and ground surface makes timing of peak value changed.

A study on a Integrated analysis for survey of the cavity behind the Concrete (콘크리트 배면 공동탐사를 위한 복합적 해석 연구)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Integrated analysis of GPR, impact echo and impulse response for detection of the rear cavity of concrete was performed on the test-bed which was made in the same scale and component ratio to the real concrete structure. GPR survey may roughly delineate the location of the cavity, but applying the IE and IR technique to the test-bed, the location was clearly identified.

  • PDF

High resolution ground penetrating image radar using an impulse waveform (초광대역 임펄스를 이용한 고해상도 지반탐사 이미지 레이더)

  • Park, Young-Jin;Kim, Kwan-Ho;Park, Hae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2342-2344
    • /
    • 2005
  • 초광대역 임펄스를 이용한 비파괴 지중 매설물 탐지용 지반 탐사 레이더(Ground penetrating image radar: GPR)를 개발하였다. 최대 탐사 깊이를 고려하여, 900 picosecond(ps) 상승 시간을 갖는 초광대역 임펄스를 설계하였고, 임펄스 발생기의 주파수 특성을 고려하여, 소형 평판형 다이폴 안테나가 설계되었다. 또한, 지중으로부터 반사되는 신호를 수신하기 위해서 고속의 A/D를 사용하였다. 측정은 송수신 안테나의 간격을 고정한 Bistatic 방식을 사용하였으며, 지중 매설물의 영상처리 판별을 위해 마이그레이션(migration) 기법을 사용하였다. 개발된 시스템은 금속 물체와 비금속 물체가 매설된 실증 시험장에서 시험되었고, 평면 해상도 및 깊이에 대한 해상도가 우수함을 보였다.

  • PDF

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.