• 제목/요약/키워드: improving efficiency

Search Result 3,163, Processing Time 0.033 seconds

SIMULATION AND AUTOMATION OF A RICE MILL PLANT - DEVELOPMENT OF SIMULATION MODEL -

  • Chung, J.H.;Youm, G.O.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.378-387
    • /
    • 2000
  • A rice mill plant with a capacity of 2.5 ton/hr was constructed with automated facilities at Chonnam National University. A simulation model was developed with SLAM SYSTEM for evaluating and improving the rice mill plant. The developed model was validated in the views of hulling efficiency, milling efficiency, milled rice recovery, other materials produced, and bottlenecks in the processes. The results of hulling efficiency, milling efficiency, milled rice recovery in the simulation were, respectively, 81.1%, 89.5%, and 73.1%, while those of the actual mill plant were 81.5%, 90.2%, and 73.5%. The simulation results including the productivity of other materials(chaff, bran, broken rice, stone, etc) produced in the processes were almost similar with those of the actual process. In the simulation the bottlenecks were found out in the processes of separating brown rice and of sorting colored rice. These phenomenon also appeared in the actual process. It needed to increase the hourly capacity of the brown rice separator and the rice color sorter. As the developed model could well express the automated rice mill plant, it could be used for designing and improving rice mill plants. In addition, an alternative model needed to be developed for the system control more accurately and for increasing the rice quality.

  • PDF

A Study on High Frequency Sustaining Driver for Improving Luminance Efficiency of AC-PDP (AC-PDP의 광효율 향상을 위한 고주파 구동회로에 관한 연구)

  • Choi, Seong-Wook;Han, Sang-Kyoo;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.380-384
    • /
    • 2005
  • Plasma display panel (PDP) has a serious thermal problem, because the luminance efficiency of the conventional PDP is about 1.5 lm/W and it is less than $3{\sim}5$ lm/W of cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP There are several approaches to improve the luminance efficiency of the PDP and we adopt the driving PDP at high frequency range from 400 kHz up to over 700 kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDP at high frequency range. In this paper, we investigate the effect of the parasitic components of PDP itself and driver when the reactive energy of panel is recovered. Various drivers are classified and evaluated whether it is suitable for high frequency driver, and finally current-fed type with do input voltage biased is proposed. This driver overcomes the effect of parasitic component in panel and driver and fully achieves ZVS of all full-bridge switches and reduces the transition time of the panel polarity.

  • PDF

Development of Power Distribution Algorithm for Driving Efficiency Optimization of Independently Driven Vehicle (독립구동 인휠 전기자동차의 주행 효율 최적화를 위한 구동력 분배 알고리즘)

  • Park, J.H.;Song, H.W.;Jeong, H.U.;Park, C.H.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.16-21
    • /
    • 2014
  • The purpose of this paper is to construct a control algorithm for improving the driving efficiency of 4-wheel-drive in-wheel electric vehicles. The main parts of the vehicle were modeled and the input-output relations of signals were summarized using MATLAB/Simulink. A performance simulator for 4-wheel-drive in-wheel electric vehicles was developed based on the co-simulation environment with a commercial dynamic behavior analysis program called Carsim. Moreover, for improving the driving efficiency of vehicles, a torque distribution algorithm, which distributes the torque to the front and rear wheels, was included in the performance simulator. The effectiveness of the torque distribution algorithm was validated by the SOC simulation using the FTP-75 driving cycle.

Drought Tolerance in Italian Ryegrass is Associated with Genetic Divergence, Water Relation, Photosynthetic Efficiency and Oxidative Stress Responses

  • Lee, Ki-Won;Woo, Jae Hoon;Song, Yowook;Lee, Sang-Hoon;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.208-214
    • /
    • 2022
  • Drought stress is a condition that occurs frequently in the field, it reduces of the agricultural yield of field crops. The aim of the study was to screen drought-adapted genotype of Italian rye grass. The experiments were conducted between the two Italian ryegrass (Lolium multiflorum L.) cultivars viz. Hwasan (H) and Kowinearly (KE). The plants were exposed to drought for 14 days. The results suggest that the morphological traits and biomass yield of KE significantly affected by drought stress-induced oxidative stress as the hydrogen peroxide (H2O2) level was induced, while these parameters were unchanged or less affected in H. Furthermore, the cultivar H showed better adaptation by maintaining several physiological parameter including photosystem-II (Fv/Fm), water use efficiency (WUE) and relative water content (RWC%) level in response to drought stress. These results indicate that the cultivar H shows improved drought tolerance by generic variation, improving photosynthetic efficiency and reducing oxidative stress damages under drought stress. These findings can be useful to the breeder and farmer for improving drought tolerance in Italian rye grass through breeding programs.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

The Optimum Control Study for Improving Efficiency of the Small Hydropower Generation in Water Pipe (수도관로 소수력발전 운영효율 향상을 위한 최적제어 방안)

  • Hong, Jeong-Jo;Rim, Dong-Heui;Kim, Soo-Sang
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • Using a surplus head in presented water supply pipes, we have studied to improve the operating efficiency of small hydro generator, which was chosen for a test model with 00 hydro power plant. With regard to power control and countermeasure of water hammer impact, Finally we have represented the optimal control method through the synthetical analysis of existing system symptoms, operation efficiency, the effect of water hammer impact and system configuration.

  • PDF

Improving Power Efficiency for Color OLED Display using Color Difference Algorithm

  • Lin, Chih-Lung;Chou, Kuan-Wen;Tsai, Tsung-Ting
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1222-1225
    • /
    • 2008
  • The power efficiency of a full-color OLED display decreases with long-term operation because of the material characteristics. The lifetime of the OLED display also decreases as the power efficiency declines. Therefore, this work provides a novel color difference algorithm to improve the power consumption and extend the OLED lifetime.

  • PDF

Numerical Analysis of OLED Luminescence Efficiency by Hole Transport Layer Change (유기발광 소자의 수송층 두께 변화에 따른 수치적 해석)

  • Lee, Jung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1341-1346
    • /
    • 2004
  • The OLED research is gone for two directions. One is material development research, and another one is structural improvement part. All two are thing to heighten luminescence efficiency of OLED. n other to improve luminescence efficiency of OLED Electron - hole pairs must consist much more in the device Their profiles are sensitive to mobility velocity of electrons and holes. In this paper, we demonstrate the difference of velocity between hole and electron by experiments, and compare with a data of simulation and experiment changing hole carrier transport layer thickness, so we get the optimal we improve luminescence efficiency. We suggest improving the efficiency of OLEDS would be to balance the injection of electrons and holes into light emission layer of the device. And, we improve understanding of the various luminescence efficiency through experiments and numerical analysis of luminescence efficiency in variable hole carrier transport layer's thickness.

Evaluation of Creative Space Efficiency in China' Provinces Based on AHP Method

  • Hu, Shan-Shan;Kim, Hyung-Ho
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.52-61
    • /
    • 2020
  • The AHP method was used in 30 provinces of China to construct the index system of creative space efficiency evaluation and determine the weight of each index. The fuzzy comprehensive evaluation method was further used to score the indexes at all levels, and then the total efficiency score was sorted. The purpose of this study is to adjust the regional layout of creative space reasonably and implement financial policies accurately through the evaluation of the efficiency of creative space. The results is ranking top in weight of several indicators, which include the number of incubated Startups, the number of innovation and entrepreneurship mentors, the survival rate of incubator, the innovative training activities, etc. It was also found that Beijing, Shanghai, Jiangsu, Guangdong and Zhejiang ranked first in the score of creative space efficiency. This study is meaningful in that it was In order to effectively solve the problem of the imbalance of the creative space efficiency in China's province, by coordinating the regional pattern, establishing a sound service system and improving the efficiency evaluation system.

A Study on Improving Efficiency of Power Amplifier using Doherty Theory for Wireless Network and Repeater (도허티 이론을 이용한 무선 네트워크 및 중계기용 전력증폭기의 효율 향상에 관한 연구)

  • Jeon Joong Sung;Choi Dong Muk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.422-427
    • /
    • 2005
  • In this paper, Doherty amplifier is designed by the need of improving the linearity and efficiency of wireless network and repeater for WCDMA. It is designed to maintain the high linearity and efficiency at the low efficiency period of the power amplifier after analyzing Doherty technique using the active load-pull in condition of the high efficiency power amplifier implementation according to the variation of input power. CW 1-tone experimental results at the WCDMA frequency 2.11$\~$2.17 CHz shows that Doherty amplifier, which achieves pore. add efficiency(PAE) 50$\%$ at 6dB back off the point from maximum output power 52.3dBm, obtains higher efficiency of 13.3$\%$ than class AB. finding optimum bias point after adjusted gate voltage, Doherty amplifier shows that IMD3 improves 4dB.