• Title/Summary/Keyword: improved thermal exchange optimization

Search Result 4, Processing Time 0.018 seconds

Improved thermal exchange optimization algorithm for optimal design of skeletal structures

  • Kaveh, A.;Dadras, A.;Bakhshpoori, T.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.263-278
    • /
    • 2018
  • Thermal Exchange Optimization (TEO) is a newly developed algorithm which mimics the thermal exchange between a solid object and its surrounding fluid. In this paper, an improved version of the TEO is developed to fix the shortcomings of the standard version. To demonstrate the viability of the new algorithm, the CEC 2016's single objective problems are considered along with the discrete size optimization of benchmark skeletal structures. Problem specific constraints are handled using a fly-back mechanism. The results show the validity of the improved TEO method compared to its standard version and a number of well-known algorithms.

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

Optimization of a Fuel Cell Stack for Small Robot Systems (소형 로봇용 연료 전지 스택 설계 사양 최적화)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.