• Title/Summary/Keyword: improved integration method

Search Result 221, Processing Time 0.022 seconds

Stability Improved Split-step Parabolic Equation Model

  • Kim, Tae-Hyun;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.105-111
    • /
    • 2002
  • The parabolic equation technique provides an excellent model to describe the wave phenomena when there exists a predominant direction of propagation. The model handles the square root wave number operator in paraxial direction. Realization of the pseudo-differential square root operator is the essential part of the parabolic equation method for its numerical accuracy. The wide-angled approximation of the operator is made based on the Pade series expansion, where the branch line rotation scheme can be combined with the original Pade approximation to stabilize its computational performance for complex modes. The Galerkin integration has been employed to discretize the depth-dependent operator. The benchmark tests involving the half-infinite space, the range independent and dependent environment will validate the implemented numerical model.

Analyzing Characteristics of GPS Dual-frequency SPP Techniques by Introducing the L2C Signal

  • Seonghyeon Yun;Hungkyu Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Several experiments were carried out to analyze the impact of the modernized Global Positioning System (GPS) L2C signal on pseudorange-based point positioning. Three dual-frequency positioning algorithms, ionosphere-free linear combination, ionospheric error estimation, and simple integration, were used, and the results were compared with those of Standard Point Positioning (SPP). An analysis was conducted to determine the characteristics of each dual-frequency positioning method, the impact of the magnitude of ionospheric error, and receiver grade. Ionosphere-free and ionospheric error estimation methods can provide improved positioning accuracy relative to SPP because they are able to significantly reduce the ionospheric error. However, this result was possible only when the ionospheric error reduction effect was greater than the disadvantage of these dual-frequency positioning algorithms such as the increment of multipath and noise, impact of uncertainty of unknown parameter estimation. The RMSE of the simple integration algorithm was larger than that of SPP, because of the remaining ionospheric error. Even though the receiver grade was different, similar results were observed.

A Study on Shape Design of the Passenger Airbag for Efficiency Improvement (조수석 에어백 성능 개선을 위한 형상 설계연구)

  • Yang, Sunghoon;Yim, Jonghyun;Kim, Seungki;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.242-249
    • /
    • 2017
  • In this study, the relationship between the shape of a passenger airbag and the possibility of injury is analyzed using the Taguchi method. The optimal shape combination is proposed for a design guideline that can reduce the possibility of injury to the dummy. The airbag FE model for analysis is obtained using a CAD system that can change the shape through several independent variables. The widths of the left / right, top / bottom, and back / forth direction of the airbag shape are set as the design factors, and the effect of the combination injury probability according to the shape is analyzed. The minimum geometric combinations are obtained using the orthogonal array method. The signal to noise ratio is calculated and the optimal shape combination is obtained through sensitivity analysis. The obtained optimal shape combination is compared with the possibility of injury of the initial airbag shape to confirm improved airbag performance.

A Study on Integraion Method for Improvement of Numerical Stability of Meshfree Method (무요소법의 수치적 안정성 개선을 위한 적분기법 연구)

  • Kang, JaeWon;Kang, Da Hoon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • In order to generate meshes automatically for finite element analysis of complex structures such as aircraft, a large number of triangular elements are typically created. However, triangular elements are less accurate than rectangular elements, so it is difficult to obtain a reliable solution. This problem can be improved through the meshfree method using the back cell integration. However, this method also causes some problems such as over-use of the integration points and inefficiency of the integral domain. In order to improve these problems, a method of performing integration by setting the integral area based on a node basis has been proposed, but in the case of incompressible material problems, the numerical accuracy deteriorates due to the vibration phenomenon of the solution. Therefore, in this paper, the modified meshfree method is proposed which sets the integral domain as an element domain instead of the nodal domain, and the proposed method improves the numerical instability caused by the conventional meshfree method without decreasing the accuracy regardles of the shape of integral domain. The effectiveness of the modified meshfree method is verified by using 2-D examples.

A Study on the Stability Analysis Method Considering Bus Voltage Derivatives (모선전압 변화율을 고려한 안정도 해석법에 관한 연구)

  • Kim, Chun-Hyeon;Park, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.90-92
    • /
    • 1993
  • Stability analysis is an essential work in the operation and planning of power system. There are two categories, direct method and indirect method, and indirect method calculates the trajectories of states by numerical methods. Popular method using explicit integration has relatively low accuracy, so a more accurate method is requested. By the consideration of bus voltage variation, Runge-Kutta 4th order method can be made more accurate, but this scheme need much computation time. Through three recipes, computational cost of proposed method can be reduced. So the proposed method has improved accuracy and slight rise in cost. the method was tested on the IEEE 14 bus system.

  • PDF

A/F Control of an MPI Engine on Transient Conditions with an Intergration type Ultrasonic Flow Meter (적분형 초음파 유량계를 이용한 MPI 엔진의 비정상상태 공연비 제어)

  • 김중일;장준석;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.36-47
    • /
    • 1999
  • Three-way catalyst converter, cleaning up the exhaust gas contamination of SI engine, has the best efficiency when A/F ratio is near the stoichiometry . The feedback control using oxygen sensors in the exhaust manifold has limits caused by the system delays. So the accurate measurement of air flow rate to an engine is essential to control the fuel injection rate especially on transient condition like the rapid throttle opening and closing. To measure the rapid change of flow rates. the air flow meter for the engine requires quick response, flow reversal detection, and linearity . Tjhe proposed integration type air flow meter (IFM), composed of an ultrasonic flow meter with an integration circuit, has significantly improved the measurement accuracy of air mass inducted through the throttle body. The proposed control method estimated the air mass at the cylinder port using the measured air mass at the throttle . For the fuel dynamic model, the two constant fuel model is introduced . The control parameters from air and fuel dynamics are tuned to minimize the excursion of the air fuel ratio. As a result A/F ratio excursion can be reduced within 5% when throttle rapidly opens and closes at the various engine conditions.

  • PDF

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (III) - Modification of Desing Response Specra (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (III) - 설계응답스펙트럼 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.63-71
    • /
    • 2006
  • In the companion paper (II, Development of Site Classification System), new size classification system based on site periods $(T_G)$ was recommended for legions of shallow bedrock depth in Korea. Despite the site classification method was improved, the response spectrum would be required to be modified by adjusting the integration interval to calculate the site coefficients because the response spectra did not match well the average spectral accelerations obtained by site response analyses in the range of long periods. In this paper, new response spectra for each site categories were determined by adjusting the integration interval of long period site coefficient $F_v\;from\;0.4{\sim}2.0\;to\;0.4{\sim}1.5$ second. It matched well the average spectral accelerations and new response spectrum, and it was also improved compared to the current she classification system.

Enhancement of heat exchange using On-chip engineered heat sinks

  • Chong, Yonuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.18-21
    • /
    • 2017
  • We report a method for improving heat exchange between cryo-cooled large-power-dissipation devices and liquid cryogen. Micro-machined monolithic heat sinks were fabricated on a high integration density superconducting Josephson device, and studied for their effect on cooling the device. The monolithic heat sink showed a significant enhancement of cooling capability, which markedly improved the device operation under large dc- and microwave power dissipation. The detailed mechanism of the enhancement still needs further modeling and experiments in order to optimize the design of the heat sink.

ISAR Motion Compensation based on Accumulation and Limitation of Consecutive Radar Returns

  • Seo, Dong-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1803-1812
    • /
    • 2000
  • A new motion compensation method for ISAR is presented in this paper. It employs amplitude limiting and integration of consecutive range profiles to improve the range and phase alignment accuracy and to alter the propagation properties of compensation errors. These allow the image quality to be significantly improved. It is shown from the imaging results that the new motion compensation algorithm can get images of targets in field situations with much better quality than the traditional cross-correlation algorithm.

  • PDF