• Title/Summary/Keyword: improved ground

Search Result 1,173, Processing Time 0.027 seconds

Improvement of Short Range Performance of Meteor Burst Path with Buried Antenna (지하 매설형 안테나를 이용한 근거리 유성 버스트 통신의 특성개선)

  • 김병철;김기채;이무영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.788-801
    • /
    • 1998
  • Meteor Burst Communication can provide effective and economical means of communication where long distance VHF NLOS data transmission is needed ; often ranges more than 1000 km. It has been, however, so far considered unsuitable for short distance application because of phenomenal decrease in burst durations, which leads to decreation of total duty rate of the system. This paper extensively analyzes characteristics of shot distance MB(Meteor Burst) path and shows the low duty rate may be improved by increasing burst rate through adapting antennal beam width to cover entire hot-spot region in the space and, by compensating effective burst length throughcutting down man-made noises introduced by antennal. Based on the analysis, we are developed a small-opening-cavity antennal, especially designed for short distance MB path. In operation, the antenna is to be buried under ground surface so as to improve directivity and reduces noise introduction. The antennal exhibits power gain of 3 dB with 90 degree beam width and thus enables to illuminate entire hot-spot regions with the elevation angle of 8-90 degree which is the case of transmission less than 100 km. Directivity horizontal to earth surface is suppressed to minimum which enables to cut man-made noises from near-by sources down to more than 3 dB from the level reported with conventional 4 element Yagi. A series of experiments performed on 100km MB paths have conformed that, with the antenna installed at receiving site, the burst rate and duration time have been noticed to increase by 10 and 20 percent respectively from the values obtained by conventional 4-element Yagi antennal under same testing condition.

  • PDF

Development of Backfill Materials for Underground Power Cables Considering Thermal Effect (열특성 효과를 고려한 지중송전관로용 되메움재 개발)

  • Lee Dae-Soo;Kim Dae-Hong;Hong Sung-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.41-52
    • /
    • 2005
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need fur cable backfill materials that can maintain a low thermal resistivity even while subjected to high temperatures for prolonged periods. Temperatures greater than $50^{\circ}C\;to\;60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were carried out for Dongrim river sand, a relatively uniform sand of very high thermal resistivity, $50^{\circ}C-cm/watt\;at\;10\%$ water content, $260^{\circ}C-cnuwatt$ when dry, and Jinsan granite screenings, and D-2 (sand and granite screenings mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity, about $35^{\circ}C-cm/watt$ when at 10 percent water content, $100^{\circ}C-cm/watt$ when dry. Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity and the applicability was assessed through field tests.

Effects of Feeding Rancid Rice Bran on Growth Performance and Chicken Meat Quality in Broiler Chicks

  • Chae, B.J.;Lee, K.H.;Lee, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.266-273
    • /
    • 2002
  • A total of 225 day-old broiler chicks (43.08 g initial body weight) were allotted to three dietary treatments for a 6-week feeding trial. The treatments were 1) Control (defatted rice bran; DFRB), 2) fresh rice bran (FRB) and 3) rancid rice bran (RRB). Rice brans were intentionally spoiled by two degrees of rancidity by the values of free fatty acids (FFA): 7.6% (FRB) and 16.3% (RRB). Diets were prepared on an isonutrient basis, and defatted or rancid rice brans were included 5 and 10% for starter (0-3 week) and finisher (3-6 week), respectively. At the end of the feeding trial, six chicks per treatment were sacrificed, and thigh meats were ground and stored at $1^{\circ}C$ for thiobarbituric acid reactive substances (TBARS) and peroxide value (POV) analyses. For a digestibility, 48 growing chicks (4 weeks old) were employed in cages (3 replicates/treatment, 2 birds/cage) according to the experimental design: FRB, RRB, pelleted and extruded rice bran. Some of the FRB were pelleted ($70^{\circ}C$) or extruded ($110^{\circ}C$). There was no significant difference in growth performance during the starter period, but chicks fed a diet containing DFRB grew faster (p<0.05) with increased feed intake (p<0.05) than those fed diets containing rice brans, FRB or RRB, during the finisher period. Feed conversion ratio in the RRB was inferior (p<0.05) to the DFRB. Between rice bran groups, weight gain was higher (pco.os) in FRB than in RRB during finisher period. There was a similar trend in growth performance of chicks for the overall period (0-6 week) as the finisher period. Dry matter and energy digestibilities were higher (p<0.05) in extruded than in RRB group. Protein digestibility was improved (p<0.05) when rice bran was extruded, but not pelleted. The chicken meats from RRB showed higher (p<0.05) TBARS than those from FRB during storage for 4 weeks at $1^{\circ}C$. In conclusion, it would appear that feeding rancid rice bran gave negative effects on growth performance and lipid stability of meat in broiler chicks.

Improvement of Rainfall Estimation according to the Calibration Bias of Dual-polarimetric Radar Variables (이중편파레이더 관측오차 보정에 따른 강수량 추정값 개선)

  • Kim, Hae-Lim;Park, Hye-Sook;Ko, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1227-1237
    • /
    • 2014
  • Dual-polarization can distinguish precipitation type and dual-polarization is provide not only meteorological phenomena in the atmosphere but also non-precipitation echoes. Therefore dual-polarization radar can improve radar estimates of rainfall. However polarimetric measurements by transmitting vertically vibration waves and horizontally vibrating waves simultaneously is contain systematic bias of the radar itself. Thus the calibration bias is necessary to improve quantitative precipitation estimation. In this study, the calibration bias of reflectivity (Z) and differential reflectivity ($Z_{DR}$) from the Bislsan dual-polarization radar is calculated using the 2-Dimensional Video Disdrometer (2DVD) data. And an improvement in rainfall estimation is investigated by applying derived calibration bias. A total of 33 rainfall cases occurring in Daegu from 2011 to 2012 were selected. As a results, the calibration bias of Z is about -0.3 to 5.5 dB, and $Z_{DR}$ is about -0.1 dB to 0.6 dB. In most cases, the Bislsan radar generally observes Z and $Z_{DR}$ variables lower than the simulated variables. Before and after calibration bias, compared estimated rainfall from the dual-polarization radar with AWS rain gauge in Daegu found that the mean bias has fallen by 1.69 to 1.54 mm/hr, and the RMSE has decreased by 2.54 to 1.73 mm/hr. And estimated rainfall comparing to the surface rain gauge as ground truth, rainfall estimation is improved about 7-61%.

An Improvement on Wayfinding which considers Universal Design Concept (유니버설 디자인개념을 고려한 Wayfinding 개선 연구)

  • Lee, Kyung-A;Kim, Won-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.423-432
    • /
    • 2016
  • Due to the increase in the number of transfer lines and ground level connections with mixed-use high-rise buildings, the Seoul Metro suffers from loaded signage fatigue because of the presence of too many signs. The purpose of this research is to propose ways of improving the wayfinding on the Seoul subway station by examining the signage and (applying the) universal design (UD) concept. A review of the literature explored five universal design components, viz. the accessibility, safety, equitability, perception, and aesthetics. The field investigation found that the ceiling and wall type and general information boards were high on the information hierarchy. The survey respondents merely perceived universal design concept, however, most needed principle. The IPA found that the signs should be appropriately laid out, spaced and located from the perspective of accessibility, and their unity and harmony were other aspects that could be improved while general information boards should include important landmarks outside. In conclusion, this study suggests that the universal design signage concept should be applied to every station and that specific stations should have a duly sign system.

Compact Half Bow-tie-type Quasi-Yagi Antenna for Terrestrial DTV Reception (지상파 디지털 방송 수신용 소형 반 보우 타이 형 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1908-1914
    • /
    • 2013
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The coplanar strip line which feeds the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type rectangular director at a location close to the driver dipole, broadband impedance matching and gain enhancement in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bow-tie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as a design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a good performance such as a frequency band of 450-848 MHz for a VSWR < 2, gain > 4.1 dBi, and front-to-back ratio > 10.4 dB.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

A Study on Pseudo-Range Correction Modeling in order to Improve DGNSS Accuracy (DGNSS 위치정확도 향상을 위한 PRC 보정정보 모델링에 관한 연구)

  • Sohn, Dong Hyo;Park, Kwan Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • We studied on pseudo-range correction(PRC) modeling in order to improve differential GNSS(DGNSS) accuracy. The PRC is the range correction information that provides improved location accuracy using DGNSS technique. The digital correction signal is typically broadcast over ground-based transmitters. Sometimes the degradation of the positioning accuracy caused by the loss of PRC signals, radio interference, etc. To prevent the degradation, in this paper, we have designed a PRC model through polynomial curve fitting and evaluated this model. We compared two quantities, estimations of PRC using model parameters and observations from the reference station. In the case of GPS, the average is 0.1m and RMSE is 1.3m. Most of GPS satellites have a bias error of less than ${\pm}1.0m$ and a RMSE within 3.0m. In the case of GLONASS, the average and the RMSE are 0.2m and 2.6m, respectively. Most of satellites have less than ${\pm}2.0m$ for a bias error and less than 3.0m for RMSE. These results show that the estimated value calculated by the model can be used effectively to maintain the accuracy of the user's location. However;it is needed for further work relating to the big difference between the two values at low elevation.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

A study on the development of tunnel soundness evaluation system using artificial neural network (인공신경망을 이용한 터널 건전도 평가시스템 개발)

  • 김현우;김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • One of the major roles of concrete lining is the supplementary support of ground load. Therefore, if there are cracks or deformation found in the lining, the causes should be carefully examined. Tunnel Soundness Evaluation System (DW-TSES) was developed to meet such requirements. Main facility of the system was intended to find the probable causes on the basis of the apparent changes in lining and the environmental conditions. It also includes facilities for evaluating the soundness of a tunnel and indicating the method for repair or reinforcement. The characteristic feature of damages is used for reasoning in case of deterioration and leakage, and artificial neural network is used in external pressure. This process depends on the results of the case analyses and FDM, which have a collection of the typical features of different types of damages as well as the unusual changes caused by the external pressure. The comparison of the outputs of this system with those of expert's diagnoses draws the following conclusions. 1) Artificial neural network was a suitable tool to find to causes of damages by external pressure. 2) The environmental conditions improved the accuracy in reasoning. 3) The result of finding causes and evaluating soundness was helpful to suggest effective methods concerning tunnel maintenance.

  • PDF