• Title/Summary/Keyword: impregnation time

Search Result 119, Processing Time 0.023 seconds

The Impregnation of Thermoplastic Resin into a Unidirectional Fiber Bundle (열가소성 수지 복합재료에서의 수지 함침)

  • Kim, Tae-Uk;Jeon, Ui-Jin;Lee, U-Il
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.163-168
    • /
    • 1988
  • Impregnation of molten thermoplastic resin into continuous unidirectional fiber bundles was investigated. The degree of impregnation is defined as the ratio between the number of impregnated fibers and the total number of fibers of a bundle. The degree of impregnation was modeled as a function of time, impregnation pressure, temperature and tow size assuming the radial inward flow through the fiber bundle is governed by the Darcy's law. The permeability was assumed to be constant. Experiments were performed to evaluate the validity of the medel. Today's T300 graphite fiber bundles and Polyetheretherketone(PEEK) resin was used. A fiber bundle and resin powder were put into a mold and pressure and temperature were applied. After a predetermined time, the sample was taken out and microphotographs of the cross-section were taken. From the microphotographs, the number of impregnated fibers was counted and then the degree of impregnation was determined. Experiments were also performed for different tow sizes. Good agreements were found between the model and the experiments rendering a confidence in the model.

  • PDF

The Manufacture of High-Density Woodceramic through the Secondary Carbonization

  • Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • A repeated impregnation and carbonization process was performed to prepare high-density woodceramics using MDF. The physical properties were estimated to further confirm morphologically structurally occurred changes of one-time and two-time phenolic resin treated and carbonized woodceramics. As compare one-time and two-time carbonized woodceramics, the increasing rate of weight and density declined after second carbonization as the resin impregnation ratio grew higher, and when the resin impregnation ratio was 40 percent, the weight and density of the second carbonization increased more than in the first step by 20.5% and 33.9% respectively which were the highest rates.

Characterization of ultra Precision Grinding Plate for GMR Head Manufacturing by Measuring Frictional Force (마찰력 측정을 통한 GMR 헤드 제작용 초정밀 연마판의 특성화)

  • 노병국;김기대
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.78-83
    • /
    • 2003
  • Characterization of an ultra precision grinding plate for GMR head manufacturing is performed by measuring frictional forces between the grinding plate and the advanced ceramic Two kinds of methods of producing the precision grinding plates are presented: texturing and micro-channeling. Texturing is effective in terms of production time but micro-channeling excels in quality control. It is found that the frictional coefficient of a precision grinding plate decreases as the impregnation of diamond grain onto the precision-grinding plate progresses, and remains unchanged once the impregnation process is successfully completed, even after 100 revolutions of the precision-grinding plate against the advanced ceramic under 40 N of normal force. Therefore, the measurement of the frictional coefficient can replace costly and time-consuming process of estimating the level of impregnation of diamond grain on the precision-grinding plate, which has been performed by using scanning electron microscope, and be employed as an index to determine the level of impregnation of diamond grain.

Manufacturing of High Density Woodceramics by Recarbonization Using a Resin Impregnation Board - Change of Density Profile - (수지함침보드의 2차 탄화에 의한 고밀도 우드세라믹 제조 - 밀도경사 변화 -)

  • Oh, Seung-Won;Jeon, Soon-Sick;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • A repeated impregnation and carbonization process was introduced to product high-density woodceramics using a resin impregnation board. The density profile were measured to further confirm morphologically and structurally occurred changes of one-time and two-time phenolic resin-treated and carbonized woodceramics. After the two-time carbonization of the products, the minimum, average and maximum densities increased more than those of the one-time carbonized woodceramics, and the increase of density profile. Therefore, it is considered that the preparation of uniformed woodceramics with high-density and low density dissipation can be produced by a repeated impregnation and carbonization).

Quality Enhancement of Falcataria-Wood through Impregnation

  • SUMARDI, Ihak;DARWIS, Atmawi;SAAD, Sahriyanti;ROFII, Muhammad Navis
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.722-731
    • /
    • 2020
  • The purpose of this research is to determine the efficiency of impregnation using phenol formaldehyde resin to enhance Falcataria wood's stability and better mechanical properties. Impregnation process was carried out after moisture content stabilized at 12% on samples with a dimension of 20 mm × 20 mm × 300 mm at various concentrations and pressure time. Dimensional stability was evaluated by thickness swelling (TS) and anti-swelling efficiency (ASE) and the young's modulus was conducted according to BS 573. The mechanical properties and dimensional stability of impregnated wood were evaluated. Dimensional stability and mechanical properties of Falcataria wood were successfully increased after impregnation. PF impregnation can improve the mechanical properties and the density from 0.26 g/㎤ to 0.30 g/㎤ even with only 10% of weight percent grain. Dimensional stability increases with increasing resin concentration and time pressure. The highest increase in mechanical properties was found at a higher concentration of PF. The penetration of PF into the wood's cell darkens the color of impregnated wood.

A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite (열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.

Vacuum Pressure Treatment of Water-Soluble Melamine Resin Impregnation for Improvement of Dimensional Stability on Softwoods (목재의 치수안정성 개선을 위한 진공가압 멜라민 수지함침처리)

  • Oh, Seung-Won;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.327-333
    • /
    • 2015
  • To measure the dimensional stability of three softwoods by vacuum pressurization of water soluble melamine-formaldehyde (MF) resin impregnation process, properties of resin treated compressed woods (compregs) were measured after impregnating the water soluble MF resin into three coniferous wood species for different impregnation times and resin concentrations. As the resin concentration was higher and impregnation time was longer, coefficients of volumetric shrinkage and anti-volumetric swelling efficiency increased, but coefficients of volumetric swelling, anti-volumetric swelling efficiency and absorption decreased. Also, weight percent gain increased remarkably as the resin concentration was high, but there was no uniform relationship with impregnation time.

Flame Retardancy of Wood Products by Spreading Concentration and Impregnation Time of Flame Retardant (방염제의 도포량과 침지시간 차이에 따른 목재제품의 방염성능)

  • PARK, Sohyun;HAN, Yeonjung;SON, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.417-430
    • /
    • 2020
  • The flame retardancy, such as carbonized length and area, of four plank type wood products by the spreading concentration and impregnation time of flame retardant were measured according to standard of the Nation Fire Agency in Republic of Korea. To measure the flame retardancy, Korean pine plywood, Japanese larch plywood, Japanese cypress planks, and perforated birch plywood boards were treated with self-development flame retardant by 300 and 500 g/㎡ spreading concentration and those were compared with control specimen. In general, the flame retardant performance of wood products improved as the spreading concentration of flame retardant increased. Except for Japanese larch plywood, there was no significant difference in the flame retardant performance by the spreading concentration. The flame retardant performance of perforated birch plywood board was positively correlated up to 60 minutes of impregnation time, but then gradually decreased. These results about the flame retardancy of wood products by spreading concentration and impregnation time were expected to be basic data for improving flame-retardant treated wood.

Preparation of Nano-sized Zirconia Powders by the Impregnation Method (함침법에 의한 지르코니아 나노 분말의 합성)

  • Han, Cheong-Hwa;Kim, Soo-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The nano-sized zirconia powders were synthesized in an impregnation method using pulp and $ZrOCl_2{\cdot}8H_2O$ as an initial material. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powder was controlled by preparation conditions, such as drying temperature and time. As a result of the various drying and calcination conditions, 30~50 nm sized homogeneous zirconia particles were obtained at $800^{\circ}C$ for 1 h. Crystallization and the rapid growth of particles were accelerated with increasing calcination temperature and time. Tetragonal phase generated below $800^{\circ}C$ were transferred to monoclinic phase with increasing calcination temperature and time. Moreover, above $800^{\circ}C$, heat treatment time had very large influence on the particle growth, and the change of drying condition also had large influence on the growth of a crystal.

Reinforcement of Concrete Structure by Impregnation of Molten Sulfur (용융황 침투에 의한 콘크리트 구조물의 물성 증진에 관한 연구)

  • 김종국;오준택;설용건;김우식
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.729-736
    • /
    • 1989
  • This study aims to reinforce concrete structure by impregnation of molten sulfur. The improved properties of sulfur impregnated concerete were confirmed by compressive strength test and water proof effect. Following variables were adopted to evaluate impregnation parameters ; 1) the effect of water content in concrete structure (0-8%) 2) impregnation time of molten sulfur(0-22hr) 3) impregnation temprature of molten sulfur(13$0^{\circ}C$, 14$0^{\circ}C$). In partial ponding experiments, the concrete specimen of sulfur impregnated by 2wt% yields 1.5 times higher value of compressive strength than that of control one(non-impregnated concerte). In complete ponding experiments, the mortar specimen of slufur impregnated by 12-14wt% yields 2-3 times higher value of compressive strength than that of control one (non-impregnated mortar). From the examination of X-ray diffractions, $\alpha$-sulfur was found in concrete pores. Homogeneous impregation of molten sulfur into concrete pores was also identified with poresize analysis and micrographs of SEM.

  • PDF