• Title/Summary/Keyword: implementation algorithm

Search Result 4,233, Processing Time 0.033 seconds

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (전동 이동 보조기기 주행 안전성 향상을 위한 AI기반 객체 인식 모델의 구현)

  • Je-Seung Woo;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.166-172
    • /
    • 2022
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.

Implementation of Plastic Bottle Classification System for Recycling (분리수거를 위한 페트병 분리시스템의 구현)

  • Park, Yongha;Park, Jihoon;Chung, Hoyeong;Lee, Joosang;Lee, Jungyeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.365-368
    • /
    • 2021
  • In this study, a plastic bottle recycling bin system that utilizes an infrared sensor was implemented. The proposed system consists of a recognition unit, a control unit, an alarm unit, and a driving unit. The recognition unit detects the plastic bottle, measures the distance between the plastic bottle and the infrared sensor, extracts the value of the bottle, compares the extracted value with a standard range, and then transmits the control value to the control unit if the extracted value of the bottle is outside the standard range. In this case, the result of the presence or absence of a brand label or bottle cap is transmitted to the controller. The control unit opens the entrance of the recycling bin or alerts the alarm unit according to the result value transmitted from the sensor unit. In order to implement the proposed system, the recognition unit was implemented with an infrared sensor, and the control unit was made with an Arduino IDE controller, based on the C programming language. Additionally, the recognition unit and the control unit are able to communicate using analog signals. The proposed system accurately judges the presence or absence of a brand label and bottle cap of plastic bottles according to a predetermined algorithm. It then blocks the entrance of the recycling bin when a brand label or bottle cap is still attached. As the amount of waste discharged per person is relatively high and the majority of such waste is incinerated rather than recycled, the system proposed in this study is expected to increase the recycling rate of plastic bottles.

  • PDF

Design and Implementation of Ethereum-based Future Power Trading System (이더리움 기반의 선물(Future) 전력 거래 시스템 설계)

  • Youm, Sungkwan;Lee, Heekwon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.584-585
    • /
    • 2021
  • As the production of new and renewable energy such as solar and wind power has diversified, microgrid systems that can simultaneously produce and consume have been introduced. In general, a decrease in electricity prices through solar power is expected in summer, so producer protection is required. In this paper, we propose a transparent and safe gift power transaction system between users using blockchain in a microgrid environment. A futures is simply a contract in which the buyer is obligated to buy electricity or the seller is obliged to sell electricity at a fixed price and a predetermined futures price. This system proposes a futures trading algorithm that searches for futures prices and concludes power transactions with automated operations without user intervention by using a smart contract, a reliable executable code within the blockchain network. If a power producer thinks that the price during the peak production period is likely to decrease during production planning, it sells futures first in the futures market and buys back futures during the peak production period to make a profit in the spot market. losses can be compensated. In addition, if there is a risk that the price of electricity will rise when a sales contract is concluded, a broker can compensate for a loss in the spot market by first buying futures in the futures market and liquidating futures when the sales contract is fulfilled.

  • PDF

Development of a Practical Algorithm for en-route distance calculation (항로거리 산출을 위한 실용 알고리즘 개발)

  • GeonHwan Park;HyeJin Hong;JaeWoo Park;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.434-440
    • /
    • 2022
  • The ICAO (International civil aviation organization)recommended the implementation of the GANP (global air navigation plan) for strategic decision-making and air traffic management evaluation. In this study, we proposed a new method for finding the route distance from KPI (key performance indicator) 05 actual route extension presented for air traffic management evaluation. For this purpose, we collected trajectory data for one month and calculated the en-route distances using the methods presented in ICAO and the methods presented by this author. In the ICAO method, the intersection point must be estimated through the equation of a circle for radius 40 NM and the equation of a straight line for an inner and outer point close to a circle in the track data, and four flight distances are calculated to calculate the en-route distance. In the method presented in this study, two flight distances are calculated without estimating the intersection point to calculate the en-route distance. To determine the error between the two methods, we used the performance evaluation index RMSE (root mean square error) and the determination factor R2 of the regression model.

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (객체 인식 모델과 지면 투영기법을 활용한 영상 내 다중 객체의 위치 보정 알고리즘 구현)

  • Dong-Seok Park;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.119-125
    • /
    • 2023
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.

Implementation of Parallel Processor for Sound Synthesis of Guitar (기타의 음 합성을 위한 병렬 프로세서 구현)

  • Choi, Ji-Won;Kim, Yong-Min;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.191-199
    • /
    • 2010
  • Physical modeling is a synthesis method of high quality sound which is similar to real sound for musical instruments. However, since physical modeling requires a lot of parameters to synthesize sound of a musical instrument, it prevents real-time processing for the musical instrument which supports a large number of sounds simultaneously. To solve this problem, this paper proposes a single instruction multiple data (SIMD) parallel processor that supports real-time processing of sound synthesis of guitar, a representative plucked string musical instrument. To control six strings of guitar, we used a SIMD parallel processor which consists of six processing elements (PEs). Each PE supports modeling of the corresponding string. The proposed SIMD processor can generate synthesized sounds of six strings simultaneously when a parallel synthesis algorithm receives excitation signals and parameters of each string as an input. Experimental results using a sampling rate 44.1 kHz and 16 bits quantization indicate that synthesis sounds using the proposed parallel processor were very similar to original sound. In addition, the proposed parallel processor outperforms commercial TI's TMS320C6416 in terms of execution time (8.9x better) and energy efficiency (39.8x better).

Research on Training and Implementation of Deep Learning Models for Web Page Analysis (웹페이지 분석을 위한 딥러닝 모델 학습과 구현에 관한 연구)

  • Jung Hwan Kim;Jae Won Cho;Jin San Kim;Han Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.517-524
    • /
    • 2024
  • This study aims to train and implement a deep learning model for the fusion of website creation and artificial intelligence, in the era known as the AI revolution following the launch of the ChatGPT service. The deep learning model was trained using 3,000 collected web page images, processed based on a system of component and layout classification. This process was divided into three stages. First, prior research on AI models was reviewed to select the most appropriate algorithm for the model we intended to implement. Second, suitable web page and paragraph images were collected, categorized, and processed. Third, the deep learning model was trained, and a serving interface was integrated to verify the actual outcomes of the model. This implemented model will be used to detect multiple paragraphs on a web page, analyzing the number of lines, elements, and features in each paragraph, and deriving meaningful data based on the classification system. This process is expected to evolve, enabling more precise analysis of web pages. Furthermore, it is anticipated that the development of precise analysis techniques will lay the groundwork for research into AI's capability to automatically generate perfect web pages.

Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT (효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현)

  • TaeKyoung Roh;Sang-Hyun Ha;KiHwan Kim;Young-Jin Kang;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.73-82
    • /
    • 2023
  • With 78% of current fisheries workers being elderly, there's a pressing need to address labor shortages. Consequently, active research on smart aquaculture technologies, centered on object detection and tracking algorithms, is underway. These technologies allow for fish size analysis and behavior pattern forecasting, facilitating the development of real-time monitoring and automated systems. Our study utilized video data from cameras outside aquaculture facilities and implemented fish detection and tracking algorithms. We aimed to tackle high maintenance costs due to underwater conditions and camera corrosion from ammonia and pH levels. We evaluated the performance of a real-time system using YOLOv7 for fish detection and the SORT algorithm for movement tracking. YOLOv7 results demonstrated a trade-off between Recall and Precision, minimizing false detections from lighting, water currents, and shadows. Effective tracking was ascertained through re-identification. This research holds promise for enhancing smart aquaculture's operational efficiency and improving fishery facility management.

Atmospheric Disturbance Simulation in Adaptive Optics: from Theory to Practice (적응광학에서의 대기 외란 모사: 이론에서 실제 적용까지)

  • Jun Ho Lee;Ji Hyun Pak;Ji Yong Joo;Seok Gi Han;Yongsuk Jung;Youngsoo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.199-209
    • /
    • 2024
  • Predicting the performance of adaptive optics systems is a crucial step in their design and analysis. First-order prediction methods, based primarily on several assumptions and scaling laws, are commonly used. These methods must account for various parameters and error sources, such as the intensity and profile of atmospheric turbulence, fitting errors based on the resolution of the wavefront sensor and deformable mirror, wavefront-sensor noise propagated through the wavefront-reconstruction algorithm, servo lag due to the finite bandwidth of the control loop, and anisoplanatism caused by the arrangement of natural and laser guide stars. However, since first-order performance-prediction methods based on certain assumptions can sometimes yield results that deviate from real-world performance, evaluation through computational simulations and closed-loop tests on a testbed is necessary. Additionally, an atmospheric simulator is required for closed-loop testing, which must adequately simulate the spatial and temporal characteristics of atmospheric disturbances. This paper aims to present an overview of the theory of atmospheric disturbance simulators, as well as their implementation in computational simulation and hardware.

An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority (우선순위 기반의 상황충돌 해석 조명제어시스템 구현)

  • Seo, Won-Il;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.23-33
    • /
    • 2016
  • The current smart lighting is shaped to offer the lighting environment suitable for current context, after identifying user's action and location through a sensor. The sensor-based context awareness technology just considers a single user, and the studies to interpret many users' various context occurrences and conflicts lack. In existing studies, a fuzzy theory and algorithm including ReBa have been used as the methodology to solve context conflict. The fuzzy theory and algorithm including ReBa just avoid an opportunity of context conflict that may occur by providing services by each area, after the spaces where users are located are classified into many areas. Therefore, they actually cannot be regarded as customized service type that can offer personal preference-based context conflict. This paper proposes a priority-based LED lighting control system interpreting multiple context conflicts, which decides services, based on the granted priority according to context type, when service conflict is faced with, due to simultaneous occurrence of various contexts to many users. This study classifies the residential environment into such five areas as living room, 'bed room, study room, kitchen and bath room, and the contexts that may occur within each area are defined as 20 contexts such as exercising, doing makeup, reading, dining and entering, targeting several users. The proposed system defines various contexts of users using an ontology-based model and gives service of user oriented lighting environment through rule based on standard and context reasoning engine. To solve the issue of various context conflicts among users in the same space and at the same time point, the context in which user concentration is required is set in the highest priority. Also, visual comfort is offered as the best alternative priority in the case of the same priority. In this manner, they are utilized as the criteria for service selection upon conflict occurrence.